
1

1

February 22-24, 2006

Cadence Incisive Verification Platform

SystemVerilog Workshop

Tim Pylant
Cadence Design Systems, Inc.

2

Agenda

• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary

2

3

Issues Facing RTL Designers and
Verification Engineers Today
• Designs are getting bigger

– Need to code for reuse and higher abstraction
– Need more efficient coding constructs

• Testbenches are growing exponentially
– Generate more tests faster
– More advanced techniques needed over traditional simulation
– Need ways to measure verification progress

• What users want
– An "incremental" change to their existing environment
– Re-use of their existing code
– Vendor-independent design and testbench language
– Minimal learning curve

Productivity is critical!

4

What is SystemVerilog?

• SystemVerilog offers productivity!
– It is a concise, unified language for design and testbenches.
– A single simulation tool can verify a design with advanced testbench

and verification features included
• SystemVerilog adds extensions to the IEEE Verilog 2001

standard:
– C/C++ type language constructs for efficient programming
– Language enhancements for synthesis and downstream tools
– Interfaces to encapsulate communication between design blocks
– Assertions and coverage for new verification techniques
– System-level testbench features to allow advanced verification

methodologies
– Lightweight interface to C/C++ programs

A single language for modeling complete digital systems!

3

5

SystemVerilog Misunderstandings

• Perception:
– SystemVerilog is just Verilog - It’s not a new language.
– SystemVerilog will be easy to learn because it is “just

Verilog”

• Reality:
– SystemVerilog is a significant set of extensions to Verilog
– SystemVerilog object-oriented features are just like C++

and SystemC and will take some time to learn

6

SystemVerilog Features

• SystemVerilog has a lot of new content
– 97 new keywords
– 31 different sections of the LRM
– 584 pages in the SV3.1a LRM, all new content

• Major categories of SystemVerilog features
– Convenience and synthesis features
– Data Types
– Interfaces
– SystemVerilog Assertions (SVA)
– Designer testbench
– Object-oriented testbench
– Coverage
– Direct Programming Interface (DPI)

Designer Productivity
Features

Testbench Enhancements

4

7

Design and Verification Productivity
with SystemVerilog
• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary

8

What you can do with SystemVerilog
designer productivity features?
• Convenience features allow you to describe more

functionality with less lines of code
• Synthesis features allow you to more clearly specify design

intent
• New data types and packages added for improved

readability and re-use
• Interfaces allow you to simplify design block communication
• Assertions allow you to specify and validate design behavior

5

9

SystemVerilog Convenience Features
• Allow you to describe more functionality with less

code
– More compact code is less prone to syntax errors
– These features don’t add new functionality
– Code is also more readable

initial // named begin/end
begin : myBlock
// enhanced for loop
for (int i=0; i<12; i++)
// assignment operator
intArray[i] += i*5;

...
end : myBlock

Naming of blocks
helps keep

begin/end in sync

Local loop variables
are more efficient and

easier to track

C-like operators are
easier to code

Less Code => Less Syntax Errors => Shorter Design Cycles!

10

Assignment and
Increment/Decrement Operators
• SystemVerilog adds new assignment operators:
+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, >>>=

– They are semantically equivalent to a blocking assignment:
coord_X += 8; // same as coord_X = coord_X + 8;

• SystemVerilog also adds increment and decrement
operators:
(Pre- ++var, --var and Post- var++, var--)
– These operators are also implemented as a blocking assignment
– Use them in loops: for (i=0; i < 13; i++) ...

– Standalone statements: --count;// count = count - 1;
size *= 2;// size = size*2;

• Note: In Incisive, assignment and increment/decrement operators are
implemented as standalone statements only (not allowed in expressions)

6

11

Unsized Literals

• SystemVerilog adds the ability to specify unsized literal
single-bit values with a preceding apostrophe (’), but
without base specifier to left-fill the value with that bit.

• Legal values are: ’0, ’1, ’X, ’x, ’Z, ’z

logic [7:0] tmpreg= ’1; //8’hff
logic [11:0] dbus;

initial
begin

dbus = ’0; // 12’h000
#20 dbus = ’X; // 12’hx
#20 dbus = ’1; // 12’hFFF
#20 dbus = ’z; // 12’hz

end

module scale_mux (out, in_a,
in_b, sel_a);

parameter size = 1;
output [size-1:0] out;
input [size-1:0] in_a, in_b;
input sel_a;

assign out = sel_a ? in_a :
!sel_a ? in_b : ’x;

endmodule

12

Enhanced “for” Loop

• In SystemVerilog, loop control variables can be declared within
the loop – creating a variable local to the loop.
– SystemVerilog allows unnamed blocks to contain variable

declarations
• Verilog 2001 requires:

integer i; // index declared outside the for loop
for (i=0; i<10; i=i+1) ... // unnamed block....

• SystemVerilog:
for(integer i=0; i<10; i++) ...

• SystemVerilog also allows multiple initialization and step
statements in a for loop (unlike Verilog 2001)
for (integer i=0, integer j=0; i*j <= 250; i++, j++)

$display(“i:%d j:%d i*j:%d”, i, j, i*j);

7

13

iff Event Control

• Provides conditional qualification of an event control
always @(posedge clk iff (enable == 1))

data_out <= data_in;

• The event expression only triggers if the expression after
the iff is true, in this case when enable is equal to 1.

• Expression is evaluated when ‘clk’ changes, and not when
‘enable’ changes.
module count8bit (input clk, rst_n, enable,

output logic [7:0] count);
always @(posedge clk iff (enable == 1) or negedge rst_n)

if (!rst_n)
count <= ’0;

else
count <= count+1; // only increments if enable=1

endmodule

14

Procedural Block Enhancements

• Verilog 2001 provides the always procedural block.
– Sensitivity lists, pragmas and coding styles are used to

specify implementation intent of always blocks
always @(a or b or c or d) // combinational logic
always @(posedge clk or rst_) // sequential logic

• SystemVerilog adds implementation-specific procedural
blocks to Verilog: always_comb, always_latch,
always_ff

– They reduce ambiguity in design by clearly indicating the
hardware intent for a procedural block.

– Simulation, formal, lint, synthesis, ec and other
downstream tools have a consistent specification.

8

15

Procedural Blocks: always_comb

• SystemVerilog provides an always_comb procedure for
modeling combinational logic behavior.

• Verilog 2001: always @(b or c)
a = b & c;

• SystemVerilog: always_comb // NO sensitivity list
a = b & c;

always_comb // implied sensitivity list
begin : combBlock
case (opcode)
ADD: result <= dataA + dataB;
AND: result <= dataA & dataB;
CPT: result <= myfunc(dataA, dataB);
CLR: result <= 0;
endcase

end : combBlock

16

always_comb

• The always_comb procedure is different than a normal
always procedure:
– It has an inferred sensitivity list which includes every

variable read by the procedure and in any function called
by the procedure.

– The variables written on the left-hand side of
assignments cannot be written to by any other process.

– The procedure is automatically triggered once at time
zero, after all initial and always blocks, so that the
outputs of the procedure are consistent with the inputs.

– Statements in an always_comb cannot include those
that block, have blocking timing or event controls or
fork...join statements.

9

17

always_comb vs. always @*

• always_comb is implemented differently than always
@*

– always_comb executes once at time zero and
always @* waits for a change in the inferred
sensitivity list.

– always_comb is sensitive to changes in any
functions in the block and always @* is only
sensitive to changes in the arguments of a function.

– always @* can include timing and can have
variables that are assigned in multiple always blocks.

18

always_latch

• Example
always_latch // inferred sensitivity list

if(en)
q <= d;

• Specifications/Restrictions:
– always_latch has an inferred sensitivity list that

executes identically to the always_comb procedure.
– The variables written on the left-hand side of

assignments shall not be written to by another process.
– Statements in an always_latch shall not include

those that block, have blocking timing or event controls
or fork...join statements

10

19

always_ff

• Example
always_ff @(posedge clock or negedge
reset)
if (!reset)

r1 <= 0
else r1 <= r2 + 1;

• Specification/Restrictions
– Contains one and only one event control and no

blocking timing controls.
– Variables written in the always_ff may not be

written in any other block

20

Ports: .name implicit port connection

• SystemVerilog implicit port connections allows a user to reduce
typing when the net name and the port name are identical.

• Verilog 2001: ordered port connections – risky
counter c1 (clk, rst, ld, data, cnt);

• Verilog 2001: named port connections – safe but very verbose
counter c1 (.data(data), .clk(clk), .rst(rst), .ld(ld),

.cnt(cnt);

• SystemVerilog: implicit .name ports – safe and less verbose
counter c1 (.data, .clk, .rst, .ld, .cnt);

• In SystemVerilog, when names don’t match, use named ports
counter c1 (.data, .clk, .rst(reset), .ld(load), .cnt);

• NOTE: You cannot have implicit wires with this method
wire [7:0] data, cnt;
wire clk, rst, ld;

11

21

Ports: .* implicit port connection

• SystemVerilog provides an additional way to reduce
verbosity in placing module instances.

• The .* syntax automatically connects any ports that
match exactly for that module instance.
– Any connections that can’t be inferred must be

matched up manually
– Cannot have implicit wires with this method either.

• Example from previous slide:
counter c1 (.*, .rst(reset), .ld(load));

• Mixing of positional and dot star implicit port connections are
not allowed.
counter c1 (dbus, mclk, .*); // Not allowed

22

Summary:
Convenience and Synthesis Features
• SystemVerilog includes convenience features to allows you

to describe more functionality with less code
– More compact code is less prone to syntax errors
– Code is also more readable

• SystemVerilog adds features to allow you to specify design
intent for synthesis and downstream tools
– Don’t need to use as many pragmas and synthesis

directives
– Simulation, formal, lint, synthesis, equivalence checking

and other downstream tools have a consistent
specification.

12

23

New Data Types in SystemVerilog
• SystemVerilog adds new data types to Verilog 2001,

including:
– 4-state logic type – similar to reg
– 2-state int, bit, byte, longint, shortint

types that are initialized to zero at time zero
bit user-defined vector
byte 8-bit signed integer
int 32-bit signed integer
shortint 16-bit signed integer
longint64-bit signed integer

– User-defined data types (typedef)
– Enumeration data types (enum)
– void as the return type for a function that returns no value
– Packages to declare new types, common tasks and functions

// initialized to ’x
logic [7:0] data;
// 2-state variables
// initialized to zero
bit [2:0] opcode;
int index;
byte char1, char2;

24

SystemVerilog logic Data Type

• The logic type was added to SystemVerilog to reduce
confusion when using the “reg” data type.
– reg is defined as a general-purpose variable in Verilog 2001 that

can represent either sequential logic or combinational logic
– In hardware – reg (register) refers to sequential design elements.

• logic has equivalent functionality to reg and can be used
anywhere that a reg is traditionally used.

module counter (output [3:0] dout, input clk, rst, cnt);
logic [3:0] dout;
always_ff @(posedge clk or posedge rst)

if (rst)
dout <= ’0;

else if (cnt)
dout <= dout + 1;

13

26

`ifdef WIDEBUS
typedef logic [63:0] bus_t; // 64-bit wide bus type
`else
typedef logic [31:0] bus_t; // 32-bit wide bus type
`endif
bus_t bus1, bus2; // variables of type bus_t

User Defined Data Types

• The typedef keyword allows user-defined data types.
• Types must be declared before they are used

– Outside of a module (global type) => visible for all
lexically following design units

– Inside a module or inside any declarative scope =>
visible only within that module or declarative scope

– Inside a package and imported into the module

27

Enumeration Data Types

• Enumerations are vectors with defined named constants (enumeration
constants) of specific bit patterns:
enum <type> { list_of_enumerations } ;

• Examples:
enum {IDLE, BEGIN_XFER, WAIT_DONE, END_XFER} myStates;
enum bit [1:0] { ZERO=0, ONE, TWO, THREE=3 } numbers;
enum logic { YES=1, NO=0, NOTSURE=’x } answers;
// Enumerations using typedefs
typedef enum logic [1:0] { success, warning, error}
statusT;

statusT retval; // a var retval of type statusT
retval = error; // assignment of error to retval

• Enumeration constants values:
– Implicit values: first constant => 0 otherwise previous constant value

+1 (error if previous value contains x or z)

14

28

SystemVerilog Packages
• A package is a new Verilog design unit, similar to the

VHDL package

– Used to share declarations among modules, interfaces,
programs and other packages

– Defines a single/global set of items that can be used
by any design unit that imports that package

– Typical use would be to define types and
tasks/functions

package global_types;
typedef enum {FALSE, TRUE} boolean; // global typedef
bit timeout_error; // global variable initialized to 0
task simulation_timeout (input time runtime); // global task

#runtime timeout_error = 1;
$display(“TIMEOUT: %m: %t”, $time);
$finish;

endtask : simulation_timeout
endpackage

29

Packages
• Two ways to reference data in a package

– Use it’s package item reference full name

– Use the import statement to provide visibility to identifiers in the
package

package global_types;
typedef enum {FALSE, TRUE} boolean;
typedef enum logic {H=’1, L=’0, Z=’z, X=’x} logic_state

endpackage

module error_checks;
...

global_types::boolean suppress_warnings = FALSE;
global_types::logic_state initial_state = global_types::X;

...
endmodule

import global_types::*;
module error_checks;
...

boolean suppress_warnings = FALSE;
logic_state initial_state = global_types::X;

...
endmodule

15

30

Summary:
What you can do with Data Types?
• 2-state data types (bit, int, shortint, longint, byte)

– Remove “X” and “Z” states and are initialized to zero at time 0
– Allows for variable types that are compatible with SysC and C/C++

• User-defined data types (typedef)
– Allows users to define a type that is used throughout the design

– Examples: modify bus widths without using parameters

• Enumerations (enum)
– Give names to states in a FSM or op-codes in an instruction set
– Can be used instead of parameter or ‘define
– View, set breakpoints and debug enumerations using SimVision GUI

• Packages (package endpackage)
– Define typedefs, functions/tasks and variables that can be re-

used throughout the design
– Good for common functions: printing messages, reading a bus, etc.

31

Design for Exercises
A Simple CPU

TOP
LAB 3

TEST
(generate
stimulus)

LAB 3

DESIGN

LAB 3

CTRL

LAB 1B
ALU

LAB 1A

MEM

LAB 2

16

32

Today’s Exercises

NOW
• 1A – Modeling an Arithmetic Logic Unit (ALU)
• 1B – Verifying a Simple Controller
LATER...
• 2A – Modeling a Memory Testbench
• 2B – SystemVerilog Interfaces
• 3 – Creating a Testbench with SystemVerilog

Randomization
• 4 – SystemVerilog Coverage

33

Exercise 1A and 1B

• You will use SystemVerilog design constructs and data types
to create an ALU module and to verify the controller design

• SystemVerilog Features to use:
– Packages (package...endpackage)
– enumerations and enum typedef (enum, typedef enum)
– 4-state logic data type and new 2-state types (bit, int, ...)
– .name and .* port connections
– always_ff keywords
– unsized literal notation (’0, ’1, ’x, ’z)

• Use: ncverilog +sv or ncvlog –sv command line
options to compile modules containing SystemVerilog
constructs

• SimVision also has enhancements for SystemVerilog

17

34

Review of Exercise 1A and 1B

35

SystemVerilog Interfaces

• Interfaces are a new feature added to SystemVerilog to:
– Raise the level of abstraction and simplify design block

communication by allowing a number of signals to be
represented as a single port

– Allow module port directional information and tasks/functions to
be defined inside the interface.

– Reduce the amount of code and promote reuse
– Synthesizability allows usage in the design as well as the

testbench

CTL
ALU

MEM

CTL
ALU

MEM

Interface

mem_intf
// Simple Interface
interface mem_intf;

logic [15:0] data;
logic [4:0] address;
logic read;
logic write;

endinterface

18

36

Interface Definition

• A simple interface is a named bundle of nets/variables
• It is instantiated in a design and can be accessed

– Through a port as a single item
– Component nets/variables referenced where needed

• Interfaces allow you to define relationships between
signals through module-like features:
– Continuous assignments, tasks, functions, initial

blocks, etc
• Additional features are unique to interfaces:

– modports describe directional information for
module ports and control the use of tasks/functions
inside an interface

37

top

Example Design Without an
Interface

module cpuMod (
input bit clk, gnt, rdy,
inout wire [7:0] data,
output bit req, start,
logic [7:0] addr,
logic [1:0] mode
);

...
endmodule

module top;
logic req, gnt, start, rdy;
logic clk = 0;
logic [1:0] mode;
logic [7:0] addr, data;

memMod mem (req, clk, start,
mode, addr, data, gnt, rdy);

cpuMod cpu (clk, gnt, rdy, data,
req, start, addr, mode);

...
endmodule : top

mem cpu

clk
req
start
mode
addr
data
gnt
rdy

module memMod (
input bit req, clk, start,
logic [1:0] mode,
logic [7:0] addr,
inout wire [7:0] data,
output bit gnt, rdy
);

...
endmodule

19

38

module memMod (
input clk,
simple_bus bus

);
...
endmodule

// Top-Level Testbench
module top;
logic clk = 0;
simple_bus busA ();
memMod mem (clk, busA);
cpuMod cpu (clk, busA);
...
endmodule : top

Example Using Interfaces

top

mem cpubusA
clk module cpuMod (

input clk,
interface bus
);

...
endmodule

// Interface Definition
interface simple_bus;

logic req, start, gnt, rdy;
logic [1:0] mode,
logic [7:0] addr,
wire [7:0] data,
...

endinterface : simple_bus

all variables and
nets are defined
in one place

The testbench and
other modules use
the interface definition

Use of a
generic

interface

39

Interface References
• You are able to reference any object of an interface within any

module that declared the interface in a port definition.
– Interface variables are referenced relative to the interface name.
– In this example – bus is used.

module memMod (input clk, simple_bus bus);
reg [31:0] mem [0:31];
wire read, write;
assign read = (bus.gnt && (bus.mode == 0));
assign write = (bus.gnt && (bus.mode == 1));
always @(posedge clk)

if (read)
bus.data = mem[bus.addr];

else if (write)
mem [bus.addr] = bus.data;

endmodule

// Interface definition
interface simple_bus;

logic req, start, gnt, rdy;
logic [1:0] mode;
logic [7:0] addr;
logic [7:0] data;

endinterface : simple_bus

20

40

Interface Modports
• modports

– Allow users to customize an interface for different
modules

• Provide direction information for module ports
• Specifies which signals in the interface are accessible to a

module

– There are two ways to specify modports for a
module definition:

• Directly in the module header
• In the module port connection when placing the instance

interface ms_bus;
wire a, b, c, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);

...
endinterface

41

Using Modports (cont)
• Example of modport selection

in the instance declaration
– interface ms_bus defines a

master and slave modport.
– mmod specifies a ms_bus

interface in the module
definition for Mbus

– smod specifies a ms_bus
interface in the module
definition for Sbus

– The testbench creates an
instance of ms_bus with the
name bus.

– The mmod instance connects
Mbus with bus using the
master modport.

– The smod instance connects
Sbus with bus using the
slave modport.

interface ms_bus;
wire a, b, c, d;
modport master (input a, b,

output c, d);
modport slave (output a, b,

input c, d);
endinterface

module mmod (ms_bus bus);
endmodule
module smod (ms_bus bus);
endmodule

module testbench;
ms_bus bus ();
mmod mmod1 (.bus(bus.master));
smod smod1 (.bus(bus.slave));
endmodule

21

42

SystemVerilog Assertions (SVA)
• Specify and validate design behavior

– Add to design blocks to specify expected behavior
– Add to testbenches to verify communication between

blocks and protocol sequences.
• Can also be used to provide functional coverage

information on whether sequences of behaviors have
occurred// concurrent assertions:

if_ab_then_cd : assert property
(@(posedge clk)

a ##1 b |=> c ##1 d);

// immediate assertion
always_comb

if (!sel) mux_out = in0;
else if (sel) mux_out = in1;
else assert (’b1) $display

($time,,“Bad mux select”);

• A SVA Workshop is offered to cover this topic in more
detail

43

Conditional Assertions

• The implication operator:

denotes IF – THEN

|->|->

if
then

if
then

if if if if if if

clk

B

A

A_notB: assert property (
@(posedge clk) (A) |-> (!B)

);

A_notB: assert property (
@(posedge clk) (A) |-> (!B)

);

22

44

Conditional Assertions + Future
Behavior
• Assertions can also watch for a sequence of events using:

or|=>|=>

A

clk

A_width: assert property (
@(posedge clk) (A)

|=> (!A));

A_width: assert property (
@(posedge clk) (A)

|=> (!A));

|->|->

45

Creating Sequences

A_to_D_sequence: assert property
(
@(posedge clk)
(A ##1 B) |=> (C ##1 D)
);

A_to_D_sequence: assert property
(
@(posedge clk)
(A ##1 B) |=> (C ##1 D)
);

• You can create a sequence of events using the ##<n>
operator.
– This specifies the number of samples to wait before

checking the next step in the sequence.

23

46

Working with Sequences
If A is followed by B, then next is C, and next

is D.
A_to_D_sequence: assert property (

@(posedge clk) (A ##1 B)
|=> (C ##1 D)
);

A_to_D_sequence: assert property (
@(posedge clk) (A ##1 B)

|=> (C ##1 D)
);

D }

{ A##1 { A##!

B

clk

C

D

A

{ C##1

B }

|=>

D }

B }
{ A##1{ A##1{ A##1

{ C##1
|=>

{ A##1

47

Repeating Sequences

• To repeat a step in the sequence, follow the Boolean
expression for the step with [*<number>]

• To repeat a step in the sequence for a range of numbers,
follow the Boolean expression for the step with

[*<min> : <max>]

ATM_CELL_ENABLE: assert property
(

@(posedge clk)
(soc && clav) |=> (

!en[*52])
);

ATM_CELL_ENABLE: assert property
(

@(posedge clk)
(soc && clav) |=> (

!en[*52])
);

24

48

Terminating Assertions

• Assertions can be terminated using the disable iff
construct.

req_ack: assert property (
@(posedge clk) disable iff

(reset)
(req) |-> (##[0:$] ack)

);

req_ack: assert property (
@(posedge clk) disable iff

(reset)
(req) |-> (##[0:$] ack)

);

ack

clk

req if
then

if
then

if
then

if
then

if
then

if
then

reset

X X X

49

Summary: SystemVerilog for Design
Productivity

– Convenience features allow you to describe more
functionality with less lines of code

– Synthesis features allow you to more clearly specify
design intent

– Datatypes and packages added for improved readability
and re-use

– Interfaces allow you to simplify design block
communication

– Assertions allow you to specify and validate design
behavior

25

50

Design and Verification Productivity
with SystemVerilog
• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary

51

What you can do with SystemVerilog
testbench features?
• Enhancements to Verilog tasks and functions
• New datatypes, typedefs, interfaces and other convenience

features
– Raise level of abstraction of the testbench
– Describe more functionality with less code

• Final blocks execute at end of simulation
– Useful for error reporting, statistics collection and display

26

52

SystemVerilog Enhancements to
Tasks and Functions

• SystemVerilog adds enhancements to tasks and functions

– Multiple statements in a task/function don’t require
begin/end or fork/join block

– Function output and inout ports

– Functions can return a “void” type

– Returning from a task/function before reaching the end
(return)

– Task/function arguments passed by name instead of
order

– Default task and function arguments values are allowed

53

SystemVerilog Functions:
Output Arguments and Voids

• SystemVerilog allows function arguments to be declared with the
same directional specifics as tasks (input, output, inout)

• The default direction for a function is input if it is not specified
• Functions can be declared without a return value

always @(a or b)
add (a, b, sum); // calling a void function

function void add (input integer a, b,
output integer sum);

sum = a + b;
endfunction : add // endfunction name

// Void function with default value
function void print_err (integer error_cnt=0);

$display(“%d errors occurred”, error_cnt);
endfunction

27

54

Jump Statement: Task/Function
Return

return – exits from a task or function – in this example with
a return value.

return is only used inside a task/function

function integer mult (input integer num1, num2);
begin

if ((num1!=0) && (num2!=0))
mult = num1*num2; // V2001 function return method

else
begin

$display("don't multiply by zero");
return ('hx);

end
end

endfunction

55

SystemVerilog Jump Statements (8.6)

SystemVerilog adds break and continue statements.
break – jumps out of a loop completely and continues with

the next line of code after the loop:

continue – jumps to the loop end and executes loop control.

for (reg[3:0] i=0; i<= 20; i++)
begin

if (i == 7)
break; // exits out of the loop after i=7

$display(“i: %d”, i); // prints 0,1,...6
end

for (reg[3:0] i=0; i<= 20; i++)
begin

if (i == 7)
continue; // skips next line when I=7

$display(“i: %d”, i); // prints all values except 7
end

28

56

do ... while Loops

• Verilog2001 has for, while, repeat and forever loops
• SystemVerilog adds the “C” style do...while loop

– Syntax: do <statement(s)> while
(<condition>);

– It always executes once and the condition is checked
after statement(s) execute.
initial begin

integer i = 3;
do begin

$write(“I:%d”, i);
if (i < 5) $display(“ is a Low Number”);
else $display(“ is a High Number”);
i++;

end
while (i<= 10); // condition is a boolean expression

end

57

Design for Exercise 2A and 2B
A 32x8 Memory Design and
Testbench

TOP

TEST
(generate
stimulus)

MEMclk

29

58

Today’s Exercises

DONE!
• 1A – Modeling an Arithmetic Logic Unit (ALU)
• 1B – Verifying a Simple Controller
NOW
• 2A – Modeling a Memory Testbench
• 2B – SystemVerilog Interfaces
LATER...
• 3 – Creating a Testbench with SystemVerilog

Randomization
• 4 – SystemVerilog Coverage

59

Exercise 2A and 2B

• In these Exercises you will be working with a Memory design.
– You will be completing the memory testbench using

SystemVerilog task/function enhancements
– Then you will create a interface for the memory and its

testbench.
• SystemVerilog Features to use:

– Increment (++) and enhanced for loop (for int i=0;
i<32; i++)

– 4-state logic data type and 2-state types (bit, int, ...)
– implicit.name and .* port connections
– default task input arguments, default arguments with default

value
– task/function arg passing by name (.name(name) or .name)
– void function (function void <name> (...);)
– Simple interface definition and usage (interface ...
endinterface)

– Interface modports and tasks inside interfaces

30

60

Randomization of Scope Variables
(std::randomize)

• SystemVerilog introduces scope randomization, which allows
you to assign unconstrained or constrained random values to
variables in the current scope
– Function args specify the variables to be assigned random values
– randomize returns ‘1’ if all random variables are valid, otherwise

returns ‘0’

[std::] randomize ([variable list])[with {constraint_block}];

bit [7:0] addr, data; //8-bit 2state variables
bit success;
initial begin

for (int i=0;i<32;i++) begin
success = randomize(addr, data);
write_mem (addr, data);

end
for (int i=0;i<32;i++) read_mem (addr);

end

61

Scope Randomization with
Constraints

– Use the with{...} clause to specify one or more constraint
expressions.

– randomize returns a 1 if it succeeds or 0 if it is overconstrained.

bit [4:0] addr; //5-bit 2state variable
byte data; //8-bit 2state variables
bit success;
...
// Randomize addr, data: only between 32 and 126
success = randomize(addr, data) with {data>=32; data<=126;};
// Randomize addr: 25% between h00-h0f, 75% between h10-h1f
success = randomize(addr) with

{ addr dist { [5’h00:5’h0f]:=1,[5’h10:5’h1f]:=3};};
// Randomize data: between ranges of h41-h5a and h61-h7a
success = randomize(data) with

{ data inside { [8’h41:8’h5a],[8’h61:8’h7a] };};

31

62

Random Weighted Case (randcase)

• randcase
– Case statement whose branches are randomly selected

based on a branch weight
– Probability of taking branch determined by

weight/(sum of weights)
for (integer i=0; i<50;

i++)
begin

randcase
20 : gen_atm;
30 : gen_ethernet;
10 : gen_ipv4;
5 : gen_crc_error;

endcase

for (integer i=0; i<50; i++)
begin

randcase
a : gen_atm;
a + b : gen_ethernet;
a - b : gen_ipv4;

endcase

63

Setting Seed for Randomization
(process::self.srandom)

• The srandom() method allows manually seeding the Random
Number Generator (RNG) of objects or threads. The RNG of a
process can be seeded using the srandom() method of the
process (see Section 9.9).

• The srandom() method initializes an object’s random number
generator using the value of the given seed.

process::self.srandom(seed);

initial
//set a seed at the start

process::self.srandom(100);
end

32

64

Final Blocks
• SystemVerilog adds a “final” procedural block that

executes at the end of simulation.
– Executes after explicit or implicit call to $finish
– Similar an initial procedural block, final blocks only

trigger once during a simulation (at the end)
– Like a function, only zero-time statements are allowed
– Typically used to display statistical information about

the simulation
final begin // executes at the end of simulation
if (timeout_error)

$display (“ERROR: %0t: Test Timed Out”, $time);
else

$display (“INFO: %0t: Test Complete”, $time);
$display(“Error Count: %d”, error_count);
$display(“Fifo Overflow Count: %d”, fifo_overflow);

end

65

Direct Programming Interface (DPI)

• DPI provides a means to:
– Call ‘c’ functions (import) from SystemVerilog
– Have a ‘c’ language function directly call a SystemVerilog

task or function (export)
– In Incisive Version 5.5 only import support is provided

• Syntax to import a ‘c’ function

• Syntax to import a ‘c’ task

import {“DPI” | “DPI-C”} [context | pure] [c_identifier =] function
function_data_type function_identifier ([tf_port_list]);

import {“DPI” | “DPI-C”} [context] [c_identifier =] task
task_identifier ([tf_port_list]);

33

66

Direct Programming Interface (DPI)

• Import call example:

• calc_parity_func is the ‘c’ function name (c_identifier)
• int is the datatype of the function return value

(function_data_type)
• parity_func is the function identifier as used in the

SystemVerilog code
• The function has one input a of type int

• Use model with IUS
– The ‘c’ model must be compiled and linked into a shared

object named libdpi.so (libdpi.sl on HP)
– Include the shared object in the library path
– Include the import clause in the Verilog source

import “DPI-C” pure calc_parity_func = function int parity_func
([input int a]);

67

Design for Exercises

TOP

TEST
(generate
stimulus)

DESIGN

CTRL

ALU

MEM

34

68

Today’s Exercises

DONE!
• 1A – Modeling an Arithmetic Logic Unit (ALU)
• 1B – Verifying a Simple Controller
• 2A – Modeling a Memory Testbench
• 2B – SystemVerilog Interfaces
NOW!
• 3 – Creating a Testbench with SystemVerilog

Randomization
LATER...
• 4 – SystemVerilog Coverage

69

Exercise 3

• In this Exercise you will be working on the full design.
– Create a top-level hierarchy for design and top
– Modify the testbench to add random tests using

SystemVerilog scope randomization
• SystemVerilog Features to use:

– Enhanced for loop (for int i=0; i<32; i++)
– 4-state logic data type and 2-state types (bit,
int, ...)

– implicit.name and .* port connections
– randomization wit constraings (randomize)
– random case executions with weightings (randcase)

35

70

Design and Verification Productivity
with SystemVerilog
• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary

71

SystemVerilog Coverage

• Coverage allows the user to tell how well a design has been
tested
– Randomization requires coverage metrics to make sure constraints

are correct and design functionality is being tested
• SystemVerilog has two types of functional coverage

– SystemVerilog Assertions (SVA) provide control-oriented coverage
– SystemVerilog covergroups, coverpoints and cross products

for data-oriented functional coverage

SystemVerilog Assertion Coverage:
full_then_empty : assert

property (@(posedge clk)
fifo_full |=>
##[1:$] fifo_empty);

Functional Coverage Group:
covergroup cg1 @(posedge clk);

Addr: coverpoint addr
{ bins low = { [0:’h0F], 19 };

bins mid[] = { 16, 17, 18 };
bins high = { [’h14:’hFF] }; }

AddrXvalid : cross Addr, valid;
endgroup : cg1

36

72

SystemVerilog Data-Oriented
Coverage
• SystemVerilog provides language constructs for

specification of functional coverage models.
• SystemVerilog coverage is achieved by doing the

following:
– Define a coverage model (covergroup)
– Define coverage points for the model (coverpoint)
– Defining cross-coverage points between coverage points

(cross)
– Optionally specify coverage point bins for tracking

(bins)
– Place instances of the coverage model in the design

73

Creating covergroup Instances

• The covergroup encapsulates the specification of a coverage
model:

• Example of a covergroup definition:
covergroup cg1 @(posedge clk);

< definition of covergroup >

endgroup

• The covergroup construct is a user-defined type.
• Multiple instances of that type can be created in different

contexts.
– covergroups can be placed inside a module or a named block

• Syntax for placing covergroup instances:
cg1 cg_inst = new() ; // () is optional

37

74

Covergroup Example

module example;
logic clk;
logic [15:0] address;
logic [2:0] opcode;
logic valid;

covergroup cg1 @(posedge clk);
c1: coverpoint opcode;
c2: coverpoint address;
x1: cross c1, valid;

endgroup : cg1

cg1 cover_inst = new();

...

endmodule

define the
covergroup

(cg1)
define the

coverpoints
(c1 and c2)
and cross
points (x1)

covergroup
instance

(cover_inst)

75

Coverpoints (20.4)

• Coverpoints are the variables you are interested in
tracking.

• From these variables you may be interested in tracking
specific values or ranges of values

• During simulation, the values for variables defined as
coverpoints are tracked and stored in a coverage database

• Syntax:
[coverpoint_id :] coverpoint variable_id ; |

{ bins_defn }
• Example:

c1 : coverpoint address;
c2 : coverpoint data;

75 CADENCE CONFIDENTIAL

38

76

Coverage Bins

• Bins can be created two ways – implicitly and explicitly
• While defining a coverpoint, if you do not specify any

bins, Incisive will create implicit bins.
– For an enum – it creates bins based on the data type.

For example, an enum with a range of [3:0] will have
16 bins.

– The maximum number of implicit/automatically created
bins is 64 in Incisive (can be over-ridden using the
auto_bin_max option)

• Use explicit binning when you know the values that you
want to store
– This is recommended

76 CADENCE CONFIDENTIAL

77

Bins – Vector and Scalar Bins

• There are two types of bins:
– Scalar bin: for all values in the set of values only a single

bin is created
coverpoint var1 {
bins V = {1, 2, 5}; // bin V increments for 1,
2 or 5
}

– Vector bin: a unique bin is created for each value
coverpoint var1 {
bins V[] = {1, 2, 5}; // bins V[1], V[2] and
V[5]
}

77 CADENCE CONFIDENTIAL

creates a
single bin

[] for
multiple bins

39

78

Bins Example
module example_with_bins;
logic clk;
logic [15:0] address;
logic [2:0] opcode;

covergroup cg1 @(posedge clk);
c1: coverpoint opcode; // implicit bins – 8 created
c2: coverpoint address {

bins low[] = { [0:'h0F] } ; // 16 - low[0]...low[F]
bins high = { ['h1F:'hFF] } ; // 1 – high
bins other = default ; // 1 bin for [10:1E]

}
endgroup : cg1

cg1 cover_inst = new();

...

endmodule

79

SystemVerilog Cross Coverage

• A coverpoint allows tracking of values received on a
variable and perform binning on those values

• A cross product allows a user to keep track of simultaneous
values received by more than one coverpoint

CrossAB: cross a, b;

– Causes coverage engine to keep track of values of a and
b together

• Crosses can be applied to:
– Pre-defined coverpoints within the same covergroup
– Variables which are visible in the scope
– A combination of coverpoints and variables

40

80

Cross Product Example
• Example:

reg [1:0] a;
reg [3:0] b;
reg c;
covergroup cg @(posedge clk);

CP_b: coverpoint b {
bins b1 = { [9:12] }; //one bin b1
bins b2[] = { [13:15] }; //3 bins:b2[13], b2[14], b2[15]
bins restofb[] = default;//9 bins: ignored for cross

}
CP_c: coverpoint c; // two bins
AxBxC: cross a, CP_b, CP_c; //32 bins: a(4) x CP_b(4) x CP_c(2)

endgroup : cg

Crosses created:
AxBxC.auto[0] = <a.auto[0], b.b1, c.auto[0]>
AxBxC.auto[1] = <a.auto[0], b.b1, c.auto[1]>
AxBxC.auto[2] = <a.auto[0], b.b2[13], c.auto[0]>
AxBxC.auto[3] = <a.auto[0], b.b2[13], c.auto[1]>
AxBxC.auto[4] = <a.auto[0], b.b2[14], c.auto[0]>
....

81

Running Coverage in Incisive

Recording functional coverage information with Incisive:
ncverilog +tcl+<batchfile>

tcl commands required (place in the batch file)
coverage –setup <setup_options>
coverage –functional <functional_coverage_options>

Setup Options: -testname <tname>
-dut <instname>
-workdir <dirname>

Coverage Options:-database –local_db <name> - for new dbase
-database –aggregate_db <name> - for existing dbase

Quick Setup (batch.tcl)
coverage –setup
coverage –functional

41

82

SystemVerilog Covergroups Example

Coverpoint with Automatic Bins

Covergroup Instances

Coverpoint with Defined Bins

Coverage
Results

Histogram of
Coverage Results

Source Highlighting

83

Today’s Exercises

DONE!
• 1A – Modeling an Arithmetic Logic Unit (ALU)
• 1B – Verifying a Simple Controller
• 2A – Modeling a Memory Testbench
• 2B – SystemVerilog Interfaces
• 3 – Creating a Testbench with SystemVerilog

Randomization
FINALLY....
• 4 – SystemVerilog Coverage

42

84

Exercise 3 – SystemVerilog Coverage

• In this exercise, you will observe how covergroups work
– Add covergroups to the alu testbench and measure

coverage
– Add covergroups to the design testbench and measure

coverage

85

Design and Verification Productivity
with SystemVerilog
• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary

43

86

Cadence Is Committed to Standards

• Cadence commitment
– To ensure unified standards for advanced design and verification
– Cadence has donated and opened up more than a dozen major

proprietary languages and formats to the industry, including Verilog,
GDSII and SDF.

• Cadence provides current and continuing support for the
VHDL, Verilog, SystemVerilog, e, PSL, OVL, SystemC,
Verilog-AMS, and VHDL-AMS standards

• Cadence is aggressively implementing SystemVerilog
– Have already delivered SystemVerilog in Incisive, RTL Compiler, and

Conformal LEC
– Comprehensive roadmap in place for complete implementation

across all Cadence product lines

87

Summary

• Designers and Verification Engineers are facing major
issues
– Designs sizes are getting bigger
– Testbenches are growing exponentially

• They want to improve their productivity without completely
changing their design and verification methodology

• SystemVerilog offers features to improve productivity
• Cadence is integrating SystemVerilog into our complete

verification product line to provide both performance and
efficiency

Stayed tuned for more SystemVerilog news from Cadence!

44

88

