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Agenda 

• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary
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Issues Facing RTL Designers and 
Verification Engineers Today
• Designs are getting bigger

– Need to code for reuse and higher abstraction
– Need more efficient coding constructs

• Testbenches are growing exponentially
– Generate more tests faster
– More advanced techniques needed over traditional simulation
– Need ways to measure verification progress

• What users want
– An "incremental" change to their existing environment
– Re-use of their existing code
– Vendor-independent design and testbench language
– Minimal learning curve

Productivity is critical!
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What is SystemVerilog?

• SystemVerilog offers productivity!
– It is a concise, unified language for design and testbenches.
– A single simulation tool can verify a design with advanced testbench 

and verification features included
• SystemVerilog adds extensions to the IEEE Verilog 2001 

standard:
– C/C++ type language constructs for efficient programming
– Language enhancements for synthesis and downstream tools
– Interfaces to encapsulate communication between design blocks
– Assertions and coverage for new verification techniques
– System-level testbench features to allow advanced verification 

methodologies
– Lightweight interface to C/C++ programs

A single language for modeling complete digital systems!
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SystemVerilog Misunderstandings

• Perception:
– SystemVerilog is just Verilog - It’s not a new language.
– SystemVerilog will be easy to learn because it is “just 

Verilog”

• Reality:
– SystemVerilog is a significant set of extensions to Verilog
– SystemVerilog object-oriented features are just like C++ 

and SystemC and will take some time to learn

6

SystemVerilog Features

• SystemVerilog has a lot of new content
– 97 new keywords
– 31 different sections of the LRM
– 584 pages in the SV3.1a LRM, all new content

• Major categories of SystemVerilog features
– Convenience and synthesis features
– Data Types
– Interfaces
– SystemVerilog Assertions (SVA)
– Designer testbench
– Object-oriented testbench
– Coverage 
– Direct Programming Interface (DPI)

Designer Productivity
Features 

Testbench Enhancements



4

7

Design and Verification Productivity 
with SystemVerilog
• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary
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What you can do with SystemVerilog 
designer productivity features?
• Convenience features allow you to describe more 

functionality with less lines of code
• Synthesis features allow you to more clearly specify design 

intent
• New data types and packages added for improved 

readability and re-use
• Interfaces allow you to simplify design block communication 
• Assertions allow you to specify and validate design behavior
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SystemVerilog Convenience Features
• Allow you to describe more functionality with less 

code
– More compact code is less prone to syntax errors
– These features don’t add new functionality
– Code is also more readable

initial   // named begin/end
begin : myBlock
// enhanced for loop
for (int i=0; i<12; i++)
// assignment operator
intArray[i] += i*5;

...
end : myBlock

Naming of blocks 
helps keep 

begin/end in sync

Local loop variables 
are more efficient and 

easier to track

C-like operators are 
easier to code

Less Code  => Less Syntax Errors => Shorter Design Cycles!
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Assignment and 
Increment/Decrement Operators
• SystemVerilog adds new assignment operators:  
+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, >>>=

– They are semantically equivalent to a blocking assignment:
coord_X += 8;  // same as coord_X = coord_X + 8;

• SystemVerilog also adds increment and decrement
operators: 
(Pre- ++var, --var and   Post- var++, var--)
– These operators are also implemented as a blocking assignment
– Use them in loops: for ( i=0; i < 13; i++) ...

– Standalone statements:  --count;// count = count - 1;
size *= 2;// size = size*2;

• Note: In Incisive, assignment and increment/decrement operators are 
implemented as standalone statements only (not allowed in expressions)
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Unsized Literals

• SystemVerilog adds the ability to specify unsized literal 
single-bit values with a preceding apostrophe (’), but 
without base specifier to left-fill the value with that bit. 

• Legal values are:  ’0, ’1, ’X, ’x, ’Z, ’z

logic [7:0] tmpreg= ’1; //8’hff
logic [11:0] dbus;

initial
begin

dbus = ’0;  // 12’h000
#20 dbus = ’X;  // 12’hx
#20 dbus = ’1;  // 12’hFFF
#20 dbus = ’z;  // 12’hz

end

module scale_mux (out, in_a,
in_b, sel_a);

parameter size = 1;
output [size-1:0] out;
input  [size-1:0] in_a, in_b;
input   sel_a;

assign out =  sel_a ? in_a :
!sel_a ? in_b : ’x;

endmodule

12

Enhanced “for” Loop

• In SystemVerilog, loop control variables can be declared within 
the loop – creating a variable local to the loop.  
– SystemVerilog allows unnamed blocks to contain variable 

declarations
• Verilog 2001 requires:

integer i;  // index declared outside the for loop
for (i=0; i<10; i=i+1) ...   // unnamed block....

• SystemVerilog:
for( integer i=0; i<10; i++) ...

• SystemVerilog also allows multiple initialization and step 
statements in a for loop (unlike Verilog 2001)
for (integer i=0, integer j=0; i*j <= 250; i++, j++)

$display(“i:%d  j:%d  i*j:%d”, i, j, i*j);
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iff Event Control

• Provides conditional qualification of an event control
always @(posedge clk iff (enable == 1))

data_out <= data_in;

• The event expression only triggers if the expression after 
the iff is true, in this case when enable is equal to 1. 

• Expression is evaluated when ‘clk’ changes, and not when 
‘enable’ changes.
module count8bit (input clk, rst_n, enable, 

output logic [7:0] count  );
always @(posedge clk iff (enable == 1) or negedge rst_n)

if (!rst_n)  
count <= ’0;

else
count <= count+1;  // only increments if enable=1

endmodule
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Procedural Block Enhancements

• Verilog 2001 provides the always procedural block.
– Sensitivity lists, pragmas and coding styles are used to 

specify implementation intent of always blocks
always @(a or b or c or d) // combinational logic
always @(posedge clk or rst_) // sequential logic

• SystemVerilog adds implementation-specific procedural 
blocks to Verilog: always_comb, always_latch, 
always_ff

– They reduce ambiguity in design by clearly indicating the 
hardware intent for a procedural block.

– Simulation, formal, lint, synthesis, ec and other 
downstream tools have a consistent specification.
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Procedural Blocks: always_comb

• SystemVerilog provides an always_comb procedure for 
modeling combinational logic behavior.

• Verilog 2001:    always @(b or c)
a = b & c; 

• SystemVerilog: always_comb // NO sensitivity list
a = b & c;

always_comb     // implied sensitivity list
begin : combBlock
case (opcode)
ADD: result <= dataA + dataB;
AND: result <= dataA & dataB;
CPT: result <= myfunc(dataA, dataB);
CLR: result <= 0;
endcase

end : combBlock

16

always_comb

• The always_comb procedure is different than a normal 
always procedure:
– It has an inferred sensitivity list which includes every 

variable read by the procedure and in any function called 
by the procedure.

– The variables written on the left-hand side of 
assignments cannot be written to by any other process.

– The procedure is automatically triggered once at time 
zero, after all initial and always blocks, so that the 
outputs of the procedure are consistent with the inputs.

– Statements in an always_comb cannot include those 
that block, have blocking timing or event controls or 
fork...join statements.
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always_comb vs. always @*

• always_comb is implemented differently than always 
@*

– always_comb executes once at time zero and 
always @* waits for a change in the inferred 
sensitivity list.

– always_comb is sensitive to changes in any 
functions in the block and always @* is only 
sensitive to changes in the arguments of a function.

– always @* can include timing and can have 
variables that are assigned in multiple always blocks. 

18

always_latch

• Example
always_latch // inferred sensitivity list

if(en) 
q <= d;

• Specifications/Restrictions:
– always_latch has an inferred sensitivity list that 

executes identically to the always_comb procedure.
– The variables written on the left-hand side of 

assignments shall not be written to by another process.
– Statements in an always_latch shall not include 

those that block, have blocking timing or event controls 
or fork...join statements
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always_ff

• Example
always_ff @(posedge clock or negedge
reset)
if (!reset)

r1 <= 0 
else r1 <= r2 + 1;

• Specification/Restrictions
– Contains one and only one event control and no 

blocking timing controls.
– Variables written in the always_ff may not be 

written in any other block

20

Ports:  .name implicit port connection

• SystemVerilog implicit port connections allows a user to reduce 
typing when the net name and the port name are identical.

• Verilog 2001: ordered port connections – risky
counter c1 (clk, rst, ld, data, cnt);

• Verilog 2001: named port connections – safe but very verbose
counter c1 (.data(data), .clk(clk), .rst(rst), .ld(ld), 

.cnt(cnt);

• SystemVerilog: implicit .name ports – safe and less verbose
counter c1 (.data, .clk, .rst, .ld, .cnt);

• In SystemVerilog, when names don’t match, use named ports
counter c1 (.data, .clk, .rst(reset), .ld(load), .cnt);

• NOTE: You cannot have implicit wires with this method
wire [7:0] data, cnt;
wire clk, rst, ld;
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Ports:  .* implicit port connection

• SystemVerilog provides an additional way to reduce 
verbosity in placing module instances.

• The .* syntax automatically connects any ports that 
match exactly for that module instance.
– Any connections that can’t be inferred must be 

matched up manually 
– Cannot have implicit wires with this method either.

• Example from previous slide: 
counter c1 (.*, .rst(reset), .ld(load)); 

• Mixing of positional and dot star implicit port connections are 
not allowed.
counter c1 ( dbus, mclk, .*);  // Not allowed

22

Summary: 
Convenience and Synthesis Features
• SystemVerilog includes convenience features to allows you 

to describe more functionality with less code
– More compact code is less prone to syntax errors
– Code is also more readable

• SystemVerilog adds features to allow you to specify design 
intent for synthesis and downstream tools
– Don’t need to use as many pragmas and synthesis 

directives
– Simulation, formal, lint, synthesis, equivalence checking 

and other downstream tools have a consistent 
specification.
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New Data Types in SystemVerilog
• SystemVerilog adds new data types to Verilog 2001, 

including:
– 4-state logic type – similar to reg
– 2-state int, bit, byte, longint, shortint

types that are initialized to zero at time zero
bit user-defined vector
byte 8-bit signed integer
int 32-bit signed integer
shortint 16-bit signed integer
longint64-bit signed integer

– User-defined data types (typedef)
– Enumeration data types (enum)
– void as the return type for a function that returns no value
– Packages to declare new types, common tasks and functions

// initialized to ’x
logic [7:0] data;
// 2-state variables
// initialized to zero
bit [2:0] opcode;
int index;
byte char1, char2;

24

SystemVerilog logic Data Type

• The logic type was added to SystemVerilog to reduce 
confusion when using the “reg” data type.  
– reg is defined as a general-purpose variable in Verilog 2001 that 

can represent either sequential logic or combinational logic
– In hardware – reg (register) refers to sequential design elements.

• logic has equivalent functionality to reg and can be used 
anywhere that a reg is traditionally used.

module counter (output [3:0] dout, input clk, rst, cnt);
logic [3:0] dout;
always_ff @(posedge clk or posedge rst)

if (rst)  
dout <= ’0;

else if (cnt) 
dout <= dout + 1;
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`ifdef WIDEBUS
typedef logic [63:0] bus_t; // 64-bit wide bus type
`else 
typedef logic [31:0] bus_t; // 32-bit wide bus type
`endif
bus_t bus1, bus2;   // variables of type bus_t

User Defined Data Types

• The typedef keyword allows user-defined data types.
• Types must be declared before they are used

– Outside of a module (global type) => visible for all 
lexically following design units

– Inside a module or inside any declarative scope => 
visible only within that module or declarative scope

– Inside a package and imported into the module

27

Enumeration Data Types

• Enumerations are vectors with defined named constants (enumeration 
constants) of specific bit patterns:   
enum <type> { list_of_enumerations } ;

• Examples:
enum {IDLE, BEGIN_XFER, WAIT_DONE, END_XFER} myStates; 
enum bit [1:0] { ZERO=0, ONE, TWO, THREE=3 } numbers;
enum logic { YES=1, NO=0, NOTSURE=’x } answers;
// Enumerations using typedefs
typedef enum logic [1:0] { success, warning, error}
statusT;

statusT retval; // a var retval of type statusT
retval = error; // assignment of error to retval

• Enumeration constants values:
– Implicit values: first constant => 0 otherwise previous constant value 

+1 (error if previous value contains x or z)
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SystemVerilog Packages
• A package is a new Verilog design unit, similar to the 

VHDL package

– Used to share declarations among modules, interfaces, 
programs and other packages

– Defines a single/global set of items that can be used 
by any design unit that imports that package

– Typical use would be to define types and 
tasks/functions

package global_types;
typedef enum {FALSE, TRUE} boolean;  // global typedef
bit timeout_error;  // global variable initialized to 0
task simulation_timeout (input time runtime);  // global task

#runtime timeout_error = 1;
$display(“TIMEOUT: %m: %t”, $time);
$finish;

endtask : simulation_timeout
endpackage

29

Packages
• Two ways to reference data in a package

– Use it’s package item reference full name

– Use the import statement to provide visibility to identifiers in the 
package

package global_types;
typedef enum {FALSE, TRUE} boolean;
typedef enum logic {H=’1, L=’0, Z=’z, X=’x} logic_state

endpackage

module error_checks;
...

global_types::boolean suppress_warnings = FALSE;
global_types::logic_state initial_state = global_types::X;

...
endmodule

import global_types::*;
module error_checks;
...

boolean suppress_warnings = FALSE;
logic_state initial_state = global_types::X;

...
endmodule
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Summary:
What you can do with Data Types?
• 2-state data types (bit, int, shortint, longint, byte)

– Remove “X” and “Z” states and are initialized to zero at time 0
– Allows for variable types that are compatible with SysC and C/C++

• User-defined data types (typedef)
– Allows users to define a type that is used throughout the design

– Examples: modify bus widths without using parameters

• Enumerations (enum)
– Give names to states in a FSM or op-codes in an instruction set
– Can be used instead of parameter or ‘define
– View, set breakpoints and debug enumerations using SimVision GUI

• Packages (package .... endpackage)
– Define typedefs, functions/tasks and variables that can be re-

used throughout the design
– Good for common functions: printing messages, reading a bus, etc.

31

Design for Exercises
A Simple CPU

TOP
LAB 3

TEST
(generate 
stimulus)

LAB 3

DESIGN

LAB 3

CTRL

LAB 1B
ALU

LAB 1A

MEM

LAB 2
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Today’s Exercises

NOW
• 1A – Modeling an Arithmetic Logic Unit (ALU)
• 1B – Verifying a Simple Controller 
LATER...
• 2A – Modeling a Memory Testbench
• 2B – SystemVerilog Interfaces
• 3 – Creating a Testbench with SystemVerilog 

Randomization
• 4 – SystemVerilog Coverage

33

Exercise 1A and 1B

• You will use SystemVerilog design constructs and data types 
to create an ALU module and to verify the controller design

• SystemVerilog Features to use:
– Packages (package...endpackage)
– enumerations and enum typedef (enum, typedef enum)
– 4-state logic data type and new 2-state types (bit, int, ...)
– .name and .* port connections
– always_ff keywords
– unsized literal notation (’0, ’1, ’x, ’z)

• Use: ncverilog +sv or  ncvlog –sv command line 
options to compile modules containing SystemVerilog 
constructs

• SimVision also has enhancements for SystemVerilog
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Review of Exercise 1A and 1B

35

SystemVerilog Interfaces

• Interfaces are a new feature added to SystemVerilog to:
– Raise the level of abstraction and simplify design block 

communication by allowing a number of signals to be 
represented as a single port

– Allow module port directional information and tasks/functions to
be defined inside the interface.

– Reduce the amount of code and promote reuse
– Synthesizability allows usage in the design as well as the 

testbench

CTL
ALU

MEM

CTL
ALU

MEM

Interface

mem_intf
// Simple Interface
interface mem_intf;

logic [15:0] data;
logic  [4:0] address;
logic        read;
logic        write;

endinterface
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Interface Definition

• A simple interface is a named bundle of nets/variables
• It is instantiated in a design and can be accessed

– Through a port as a single item
– Component nets/variables referenced where needed

• Interfaces allow you to define relationships between 
signals through module-like features:
– Continuous assignments, tasks, functions, initial 

blocks, etc
• Additional features are unique to interfaces:

– modports describe directional information  for 
module ports and control the use of tasks/functions 
inside an interface

37

top

Example Design Without  an 
Interface

module cpuMod (
input bit clk, gnt, rdy, 
inout wire [7:0] data, 
output bit req, start, 
logic [7:0] addr, 
logic [1:0] mode
);

...
endmodule

module top;
logic req, gnt, start, rdy;
logic clk = 0;
logic [1:0] mode;
logic [7:0] addr, data;

memMod mem (req, clk, start,
mode, addr, data, gnt, rdy);

cpuMod cpu (clk, gnt, rdy, data,
req, start, addr, mode);

...
endmodule : top

mem cpu

clk
req
start
mode
addr
data
gnt
rdy

module memMod (
input bit req, clk, start, 
logic [1:0] mode, 
logic [7:0] addr, 
inout wire [7:0] data, 
output bit gnt, rdy
);

...
endmodule
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module memMod ( 
input clk, 
simple_bus bus

);
...
endmodule

// Top-Level Testbench
module top;
logic clk = 0;
simple_bus busA ();
memMod mem (clk, busA);
cpuMod cpu (clk, busA);
...
endmodule : top

Example Using Interfaces

top

mem cpubusA
clk module cpuMod ( 

input clk,
interface bus
);

...
endmodule

// Interface Definition
interface simple_bus;

logic req, start, gnt, rdy; 
logic [1:0] mode, 
logic [7:0] addr, 
wire [7:0] data, 
...

endinterface : simple_bus

all variables and 
nets are defined
in one place

The testbench and 
other modules use
the interface definition

Use of a 
generic 

interface

39

Interface References
• You are able to reference any object of an interface within any 

module that declared the interface in a port definition.
– Interface variables are referenced relative to the interface name.
– In this example – bus is used.

module memMod ( input clk, simple_bus bus );
reg [31:0] mem [0:31];
wire read, write;
assign read  = (bus.gnt && (bus.mode == 0) );
assign write = (bus.gnt && (bus.mode == 1) );
always @(posedge clk)

if (read)
bus.data = mem[bus.addr];

else if (write)
mem [bus.addr] = bus.data;

endmodule

// Interface definition
interface simple_bus; 

logic req, start, gnt, rdy; 
logic [1:0] mode; 
logic [7:0] addr; 
logic [7:0] data; 

endinterface : simple_bus
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Interface Modports
• modports

– Allow users to customize an interface for different 
modules

• Provide direction information for module ports
• Specifies which signals in the interface are accessible to a 

module

– There are two ways to specify modports for a 
module definition:

• Directly in the module header
• In the module port connection when placing the instance

interface ms_bus; 
wire a, b, c, d;
modport master (input  a, b, output c, d);
modport slave  (output a, b, input  c, d);

...
endinterface 

41

Using Modports (cont)
• Example of modport selection 

in the instance declaration
– interface ms_bus defines a 

master and slave modport.
– mmod specifies a ms_bus

interface in the module 
definition for Mbus

– smod specifies a ms_bus
interface in the module 
definition for Sbus

– The testbench creates an 
instance of ms_bus with the 
name bus.

– The mmod instance connects 
Mbus with bus using the 
master modport.

– The smod instance connects 
Sbus with bus using the 
slave modport.

interface ms_bus; 
wire a, b, c, d;
modport master (input  a, b, 

output c, d);
modport slave (output a, b, 

input  c, d);
endinterface

module mmod (ms_bus bus);
endmodule
module smod (ms_bus bus);
endmodule

module testbench;
ms_bus bus ();
mmod mmod1 (.bus(bus.master));
smod smod1 (.bus(bus.slave));
endmodule
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SystemVerilog Assertions (SVA)
• Specify and validate design behavior

– Add to design blocks to specify expected behavior
– Add to testbenches to verify communication between 

blocks and protocol sequences.
• Can also be used to provide functional coverage 

information on whether sequences of behaviors have 
occurred// concurrent assertions:

if_ab_then_cd : assert property 
( @(posedge clk)

a ##1 b |=> c ##1 d );

// immediate assertion
always_comb

if  (!sel)    mux_out = in0;
else if (sel) mux_out = in1;
else assert (’b1) $display

($time,,“Bad mux select”);

• A SVA Workshop is offered to cover this topic in more 
detail

43

Conditional Assertions

• The implication operator:

denotes IF – THEN

|->|->

if
then 

if
then 

if if if if if if

clk

B

A

A_notB: assert property (
@( posedge clk ) ( A ) |-> ( !B )

);

A_notB: assert property (
@( posedge clk ) ( A ) |-> ( !B )

);



22

44

Conditional Assertions + Future 
Behavior
• Assertions can also watch for a sequence of events using:

or|=>|=>

A

clk

A_width: assert property (
@( posedge clk ) ( A ) 

|=> ( !A ) );

A_width: assert property (
@( posedge clk ) ( A ) 

|=> ( !A ) );

|->|->

45

Creating Sequences

A_to_D_sequence: assert property 
(
@( posedge clk )
( A ##1 B ) |=> ( C ##1 D )
);

A_to_D_sequence: assert property 
(
@( posedge clk )
( A ##1 B ) |=> ( C ##1 D )
);

• You can create a sequence of events using the ##<n>
operator.
– This specifies the number of samples to wait before 

checking the next step in the sequence.
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Working with Sequences
If A is followed by B, then next is C, and next 

is D.
A_to_D_sequence: assert property (

@( posedge clk )  ( A ##1 B )
|=> ( C ##1 D )
);

A_to_D_sequence: assert property (
@( posedge clk )  ( A ##1 B )

|=> ( C ##1 D )
);

D }

{ A##1 { A##!

B

clk

C

D

A

{ C##1 

B } 

|=>

D }

B } 
{ A##1{ A##1{ A##1

{ C##1
|=>

{ A##1

47

Repeating Sequences

• To repeat a step in the sequence, follow the Boolean 
expression for the step with [ *<number> ]

• To repeat a step in the sequence for a range of numbers, 
follow the Boolean expression for the step with

[ *<min> : <max> ]

ATM_CELL_ENABLE: assert property 
(

@( posedge clk )
( soc && clav ) |=> (

!en[*52] )
);

ATM_CELL_ENABLE: assert property 
(

@( posedge clk )
( soc && clav ) |=> (

!en[*52] )
);
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Terminating Assertions

• Assertions can be terminated using the disable iff
construct.

req_ack: assert property (
@( posedge clk ) disable iff 

(reset )
( req ) |-> (##[0:$] ack )

);

req_ack: assert property (
@( posedge clk ) disable iff 

(reset )
( req ) |-> (##[0:$] ack )

);

ack

clk

req if
then 

if
then 

if
then 

if
then 

if
then 

if
then 

reset

X X X

49

Summary: SystemVerilog for Design 
Productivity

– Convenience features allow you to describe more 
functionality with less lines of code

– Synthesis features allow you to more clearly specify 
design intent

– Datatypes and packages added for improved readability 
and re-use

– Interfaces allow you to simplify design block 
communication 

– Assertions allow you to specify and validate design 
behavior
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Design and Verification Productivity 
with SystemVerilog
• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary

51

What you can do with SystemVerilog 
testbench features?
• Enhancements to Verilog tasks and functions
• New datatypes, typedefs, interfaces and other convenience 

features
– Raise level of abstraction of the testbench
– Describe more functionality with less code

• Final blocks execute at end of simulation
– Useful for error reporting, statistics collection and display
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SystemVerilog Enhancements to 
Tasks and Functions 

• SystemVerilog adds enhancements to tasks and functions

– Multiple statements in a task/function don’t require 
begin/end or fork/join block

– Function output and inout ports

– Functions can return a “void” type

– Returning from a task/function before reaching the end 
(return)

– Task/function arguments passed by name instead of 
order

– Default task and function arguments values are allowed

53

SystemVerilog Functions:
Output  Arguments and Voids

• SystemVerilog allows function arguments to be declared with the 
same directional specifics as tasks (input, output, inout)

• The default direction for a function is input if it is not specified
• Functions can be declared without a return value

always @(a or b)
add (a, b, sum);  // calling a void function

function void add ( input integer a, b, 
output integer sum  );

sum = a + b;
endfunction : add  // endfunction name

// Void function with default value
function void print_err (integer error_cnt=0);

$display(“%d errors occurred”, error_cnt);
endfunction 
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Jump Statement: Task/Function 
Return

return – exits from a task or function – in this example with 
a return value.

return is only used inside a task/function

function integer mult (input integer num1, num2);
begin

if ((num1!=0) && (num2!=0))
mult = num1*num2;    // V2001 function return method

else
begin 

$display("don't multiply by zero");
return ('hx);

end
end

endfunction
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SystemVerilog Jump Statements (8.6)

SystemVerilog adds break and continue statements.
break – jumps out of a loop completely and continues with 

the next line of code after the loop:

continue – jumps to the loop end and executes loop control.

for (reg[3:0] i=0; i<= 20; i++)
begin

if (i == 7) 
break;   // exits out of the loop after i=7

$display(“i: %d”, i);  // prints 0,1,...6
end

for (reg[3:0] i=0; i<= 20; i++)
begin

if (i == 7) 
continue;   // skips next line when I=7

$display(“i: %d”, i);  // prints all values except 7
end
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do ... while Loops

• Verilog2001 has for, while, repeat and forever loops
• SystemVerilog adds the “C” style do...while loop

– Syntax:  do <statement(s)> while 
(<condition>);

– It always executes once and the condition is checked 
after statement(s) execute.
initial begin 

integer i = 3; 
do begin

$write(“I:%d”, i);
if (i < 5)  $display(“ is a Low Number”);
else  $display(“ is a High Number”);
i++;

end
while (i<= 10);  // condition is a boolean expression

end
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Design for Exercise 2A and 2B
A 32x8 Memory Design and 
Testbench

TOP

TEST
(generate 
stimulus)

MEMclk



29

58

Today’s Exercises

DONE!
• 1A – Modeling an Arithmetic Logic Unit (ALU)
• 1B – Verifying a Simple Controller 
NOW
• 2A – Modeling a Memory Testbench
• 2B – SystemVerilog Interfaces
LATER...
• 3 – Creating a Testbench with SystemVerilog 

Randomization
• 4 – SystemVerilog Coverage
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Exercise 2A and 2B

• In these Exercises you will be working with a Memory design.
– You will be completing the memory testbench using 

SystemVerilog task/function enhancements
– Then you will create a interface for the memory and its 

testbench.
• SystemVerilog Features to use:

– Increment (++) and enhanced for loop  (for int i=0; 
i<32; i++)

– 4-state logic data type and 2-state types (bit, int, ...)
– implicit.name and .* port connections
– default task input arguments, default arguments with default 

value
– task/function arg passing by name (.name(name) or .name)
– void function ( function void <name> (...); )
– Simple interface definition and usage ( interface ... 
endinterface )

– Interface modports and tasks inside interfaces
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Randomization of Scope Variables 
(std::randomize)

• SystemVerilog introduces scope randomization, which allows 
you to assign unconstrained or constrained random values to 
variables in the current scope
– Function args specify the variables to be assigned random values
– randomize returns ‘1’ if all random variables are valid, otherwise 

returns ‘0’

[std::] randomize ( [variable list])[with {constraint_block}];

bit [7:0] addr, data;     //8-bit 2state variables
bit success;
initial begin

for (int i=0;i<32;i++) begin
success = randomize(addr, data);
write_mem (addr, data);

end
for (int i=0;i<32;i++) read_mem (addr);

end 
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Scope Randomization with 
Constraints

– Use the with{...} clause to specify one or more constraint 
expressions.

– randomize returns a 1 if it succeeds or 0 if it is overconstrained.

bit [4:0] addr;     //5-bit 2state variable
byte data;          //8-bit 2state variables
bit success; 
...
// Randomize addr, data: only between 32 and 126
success = randomize(addr, data) with {data>=32; data<=126;};
// Randomize addr: 25% between h00-h0f, 75% between h10-h1f
success = randomize(addr) with 

{ addr dist { [5’h00:5’h0f]:=1,[5’h10:5’h1f]:=3};};
// Randomize data: between ranges of h41-h5a and h61-h7a
success = randomize(data) with 

{ data inside { [8’h41:8’h5a],[8’h61:8’h7a] };};
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Random Weighted Case (randcase)

• randcase
– Case statement whose branches are randomly selected 

based on a branch weight
– Probability of taking branch determined by 

weight/(sum of weights)
for (integer i=0; i<50; 

i++)  
begin  

randcase
20 : gen_atm;
30 : gen_ethernet;    
10 : gen_ipv4;
5 : gen_crc_error;

endcase

for (integer i=0; i<50; i++) 
begin  

randcase
a : gen_atm; 
a + b : gen_ethernet;
a - b : gen_ipv4;

endcase

63

Setting Seed for Randomization 
(process::self.srandom)

• The srandom() method allows manually seeding the Random 
Number Generator (RNG) of objects or threads. The RNG of a 
process can be seeded using the srandom() method of the 
process (see Section 9.9).

• The srandom() method initializes an object’s random number 
generator using the value of the given seed.

process::self.srandom( seed );

initial 
//set a seed at the start

process::self.srandom(100);
end
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Final Blocks
• SystemVerilog adds a “final” procedural block that 

executes at the end of simulation.
– Executes after explicit or implicit call to $finish
– Similar an initial procedural block, final blocks only 

trigger once during a simulation (at the end) 
– Like a function, only zero-time statements are allowed
– Typically used to display statistical information about 

the simulation
final begin  // executes at the end of simulation
if (timeout_error)

$display (“ERROR: %0t: Test Timed Out”, $time); 
else 

$display (“INFO: %0t: Test Complete”, $time);
$display(“Error Count: %d”, error_count);
$display(“Fifo Overflow Count: %d”, fifo_overflow);

end
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Direct Programming Interface (DPI)

• DPI provides a means to:
– Call ‘c’ functions (import) from SystemVerilog 
– Have a ‘c’ language function directly call a SystemVerilog 

task or function (export)
– In Incisive Version 5.5 only import support is provided

• Syntax to import a ‘c’ function

• Syntax to import a ‘c’ task

import {“DPI” | “DPI-C”} [context | pure] [c_identifier =] function
function_data_type function_identifier ([tf_port_list]);

import {“DPI” | “DPI-C”} [context] [c_identifier =] task
task_identifier ([tf_port_list]);
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Direct Programming Interface (DPI)

• Import call example:

• calc_parity_func is the ‘c’ function name (c_identifier)
• int is the datatype of the function return value 

(function_data_type)
• parity_func is the function identifier as used in the 

SystemVerilog code
• The function has one input a of type int

• Use model with IUS
– The ‘c’ model must be compiled and linked into a shared 

object named libdpi.so (libdpi.sl on HP)
– Include the shared object in the library path
– Include the import clause in the Verilog source

import “DPI-C” pure calc_parity_func = function int parity_func
([input int a]);
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Design for Exercises

TOP

TEST
(generate 
stimulus)

DESIGN

CTRL

ALU

MEM
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Today’s Exercises

DONE!
• 1A – Modeling an Arithmetic Logic Unit (ALU)
• 1B – Verifying a Simple Controller
• 2A – Modeling a Memory Testbench
• 2B – SystemVerilog Interfaces
NOW!
• 3 – Creating a Testbench with SystemVerilog 

Randomization
LATER...
• 4 – SystemVerilog Coverage
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Exercise 3

• In this Exercise you will be working on the full design.
– Create a top-level hierarchy for design and top
– Modify the testbench to add random tests using 

SystemVerilog scope randomization
• SystemVerilog Features to use:

– Enhanced for loop  (for int i=0; i<32; i++)
– 4-state logic data type and 2-state types (bit, 
int, ...)

– implicit.name and .* port connections
– randomization wit constraings (randomize)
– random case executions with weightings (randcase)
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Design and Verification Productivity 
with SystemVerilog
• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary

71

SystemVerilog Coverage

• Coverage allows the user to tell how well a design has been 
tested
– Randomization requires coverage metrics to make sure constraints

are correct and design functionality is being tested
• SystemVerilog has two types of functional coverage

– SystemVerilog Assertions (SVA) provide control-oriented coverage
– SystemVerilog covergroups, coverpoints and cross products 

for data-oriented functional coverage

SystemVerilog Assertion Coverage:
full_then_empty : assert

property (@(posedge clk) 
fifo_full |=> 
##[1:$] fifo_empty);

Functional Coverage Group:
covergroup cg1 @(posedge clk);

Addr: coverpoint addr
{  bins low   = { [0:’h0F], 19 };

bins mid[] = { 16, 17, 18 };
bins high  = { [’h14:’hFF] }; }

AddrXvalid : cross Addr, valid;
endgroup : cg1
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SystemVerilog Data-Oriented 
Coverage
• SystemVerilog provides language constructs for 

specification of functional coverage models.
• SystemVerilog coverage is achieved by doing the 

following:
– Define a coverage model (covergroup)
– Define coverage points for the model (coverpoint)
– Defining cross-coverage points between coverage points 

(cross)
– Optionally specify coverage point bins for tracking 

(bins)
– Place instances of the coverage model in the design
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Creating covergroup Instances

• The covergroup encapsulates the specification of a coverage 
model:

• Example of a covergroup definition:
covergroup cg1 @(posedge clk);

< definition of covergroup >

endgroup

• The covergroup construct is a user-defined type. 
• Multiple instances of that type can be created in different 

contexts.
– covergroups can be placed inside a module or a named block

• Syntax for placing covergroup instances:
cg1 cg_inst = new( ) ; // () is optional
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Covergroup Example

module example;
logic clk;
logic [15:0] address;
logic [2:0]  opcode;
logic valid;

covergroup cg1 @(posedge clk);
c1: coverpoint opcode;        
c2: coverpoint address;
x1: cross c1, valid;

endgroup : cg1

cg1 cover_inst = new();

...

endmodule

define the
covergroup

(cg1)
define the

coverpoints
(c1 and c2)
and cross 
points (x1)

covergroup
instance

(cover_inst)
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Coverpoints (20.4)

• Coverpoints are the variables you are interested in 
tracking.

• From these variables you may be interested in tracking 
specific values or ranges of values

• During simulation, the values for variables defined as 
coverpoints are tracked and stored in a coverage database

• Syntax:
[ coverpoint_id : ] coverpoint variable_id ; |  

{ bins_defn } 
• Example:

c1 : coverpoint address;
c2 : coverpoint data;

75 CADENCE CONFIDENTIAL
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Coverage Bins

• Bins can be created two ways – implicitly and explicitly 
• While defining a coverpoint, if you do not specify any 

bins, Incisive will create implicit bins.
– For an enum – it creates bins based on the data type.  

For example, an enum with a range of [3:0] will  have 
16 bins.

– The maximum number of implicit/automatically created 
bins is 64 in Incisive (can be over-ridden using the 
auto_bin_max option)

• Use explicit binning when you know the values that you 
want to store
– This is recommended

76 CADENCE CONFIDENTIAL
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Bins – Vector and Scalar Bins

• There are two types of bins:
– Scalar bin: for all values in the set of values only a single 

bin is created
coverpoint var1 {
bins V = {1, 2, 5}; // bin V increments for 1, 
2 or 5
}

– Vector bin: a unique bin is created for each value 
coverpoint var1 {
bins V[] = {1, 2, 5}; // bins V[1], V[2] and 
V[5]
}

77 CADENCE CONFIDENTIAL

creates a 
single bin

[ ] for 
multiple bins
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Bins Example
module example_with_bins;
logic clk;
logic [15:0] address;
logic [2:0]  opcode;

covergroup cg1 @(posedge clk);
c1: coverpoint opcode;    // implicit bins – 8 created
c2: coverpoint address {  

bins low[] = { [0:'h0F] } ;    // 16 - low[0]...low[F]
bins high = { ['h1F:'hFF] } ; // 1 – high
bins other = default ;         // 1 bin for [10:1E]

}
endgroup : cg1

cg1 cover_inst = new();

...

endmodule
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SystemVerilog Cross Coverage

• A coverpoint allows tracking of values received on a 
variable and perform binning on those values

• A cross product allows a user to keep track of simultaneous 
values received by more than one coverpoint

CrossAB: cross a, b;

– Causes coverage engine to keep track of values of a and 
b together

• Crosses can be applied to:
– Pre-defined coverpoints within the same covergroup
– Variables which are visible in the scope
– A combination of coverpoints and variables
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Cross Product Example
• Example:

reg [1:0] a;
reg [3:0] b;
reg c;
covergroup cg @(posedge clk);

CP_b: coverpoint b {
bins b1   = { [9:12] }; //one bin b1
bins b2[] = { [13:15] }; //3 bins:b2[13], b2[14], b2[15]
bins restofb[] = default;//9 bins: ignored for cross

}
CP_c: coverpoint c; // two bins
AxBxC: cross a, CP_b, CP_c; //32 bins: a(4) x CP_b(4) x CP_c(2)

endgroup : cg

Crosses created:
AxBxC.auto[0] = <a.auto[0], b.b1,     c.auto[0]>
AxBxC.auto[1] = <a.auto[0], b.b1,     c.auto[1]>
AxBxC.auto[2] = <a.auto[0], b.b2[13], c.auto[0]> 
AxBxC.auto[3] = <a.auto[0], b.b2[13], c.auto[1]> 
AxBxC.auto[4] = <a.auto[0], b.b2[14], c.auto[0]>
....  
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Running Coverage in Incisive

Recording functional coverage information with Incisive:
ncverilog +tcl+<batchfile>

tcl commands required (place in the batch file)
coverage –setup <setup_options>
coverage –functional <functional_coverage_options>

Setup Options: -testname <tname>
-dut <instname>
-workdir <dirname>

Coverage Options:-database –local_db <name> - for new dbase
-database –aggregate_db <name> - for existing dbase

Quick Setup (batch.tcl)
coverage –setup
coverage –functional
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SystemVerilog Covergroups Example

Coverpoint with Automatic Bins

Covergroup Instances

Coverpoint with Defined Bins

Coverage
Results

Histogram of 
Coverage Results

Source Highlighting
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Today’s Exercises

DONE!
• 1A – Modeling an Arithmetic Logic Unit (ALU)
• 1B – Verifying a Simple Controller
• 2A – Modeling a Memory Testbench
• 2B – SystemVerilog Interfaces
• 3 – Creating a Testbench with SystemVerilog 

Randomization
FINALLY....
• 4 – SystemVerilog Coverage
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Exercise 3 – SystemVerilog Coverage

• In this exercise, you will observe how covergroups work
– Add covergroups to the alu testbench and measure 

coverage
– Add covergroups to the design testbench and measure 

coverage
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Design and Verification Productivity 
with SystemVerilog
• What is SystemVerilog?
• Increase Designer Productivity

– Design Constructs
– SystemVerilog Assertions

• Enhanced Testbench Capability
– Testbench Constructs
– Randomization and Constraints

• Coverage
– SystemVerilog Coverage

• Summary
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Cadence Is Committed to Standards

• Cadence commitment
– To ensure unified standards for advanced design and verification
– Cadence has donated and opened up more than a dozen major 

proprietary languages and formats to the industry, including Verilog, 
GDSII and SDF. 

• Cadence provides current and continuing support for the 
VHDL, Verilog, SystemVerilog, e, PSL, OVL, SystemC, 
Verilog-AMS, and VHDL-AMS standards 

• Cadence is aggressively implementing SystemVerilog
– Have already delivered SystemVerilog in Incisive, RTL Compiler, and 

Conformal LEC
– Comprehensive roadmap in place for complete implementation 

across all Cadence product lines
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Summary

• Designers and Verification Engineers are facing major 
issues
– Designs sizes are getting bigger
– Testbenches are growing exponentially

• They want to improve their productivity without completely 
changing their design and verification methodology

• SystemVerilog offers features to improve productivity
• Cadence is integrating SystemVerilog into our complete 

verification product line to provide both performance and 
efficiency

Stayed tuned for more SystemVerilog news from Cadence!
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