
SystemVerilog 3.0

Accellera’s Extensions to Verilog®

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
in the creation and verification of abstract architectural level models

Copyright © 2002 by Accellera Organization, Inc.
1370 Trancas Street #163
Napa, CA 94558
Phone: (707) 251-9977
Fax: (707) 251-9877

All rights reserved. No part of this document may be reproduced or distributed in any medium what-
soever to any third parties without prior written consent of Accellera Organization, Inc.

SystemVerilog 3.0

Accellera’s Extensions to Verilog®

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
in the creation and verification of abstract architectural level models

Approved by the Accellera Board of Directors on 3 June 2002.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

ii Copyright 2002 Accellera. All rights reserved.

Verilog is a registered trademark of Cadence Design Systems, San Jose, CA

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. iii

Acknowledgements

This SystemVerilog 3.0 reference manual was developed by experts from many different fields, including
design and verification engineers, Electronic Design Automation (EDA) companies, EDA vendors, and mem-
bers of the IEEE 1364 Verilog standard working group. The primary contributors to the development of Sys-
temVerilog 3.0 include:

Vassilios Gerousis, Chair
Dave Kelf, Co-chair
Stefen Boyd
Dennis Brophy
Kevin Cameron
Cliff Cummings
Simon Davidmann
Tom Fitzpatrick
Peter Flake
Harry Foster
Paul Graham
David Knapp
Adam Krolnik
Mike McNamara
Phil Moorby
Prakash Narian
Anders Nordstrom
Rajeev Ranjan
John Sanguinetti
David Smith
Alec Stanculescu
Stuart Sutherland
Bassam Tabbara
Andy Tsay

Stuart Sutherland served at the technical editor for this document. Stefen Boyd served as editor of the BNF
annex.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

iv Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. v

Table of Contents

Section 1 Introduction to SystemVerilog .. 1

Section 2 Literal Values.. 2
2.1 Introduction (informative) .. 2
2.2 Literal value syntax... 2
2.3 Integer and logic literals ... 3
2.4 Real literals ... 3
2.5 Time literals .. 3
2.6 String literals... 3
2.7 Array literals ... 3
2.8 Structure literals .. 4

Section 3 Data Types... 5
3.1 Introduction (informative) .. 5
3.2 Data type syntax.. 6
3.3 Integer data types .. 6
3.4 Other basic data types ... 7
3.5 User-defined types .. 8
3.6 Enumerations .. 8
3.7 Structures and Unions ... 10
3.8 Casting .. 12

Section 4 Arrays .. 14
4.1 Introduction (informative) .. 14
4.2 Packed and unpacked arrays ... 14
4.3 Multiple dimensions ... 15
4.4 Indexing and slicing of arrays... 16
4.5 Array querying functions .. 17

Section 5 Data Declarations ... 18
5.1 Introduction (informative) .. 18
5.2 Data declaration syntax... 18
5.3 Constants... 18
5.4 Variables ... 19
5.5 Scope and lifetime .. 19
5.6 Nets, regs, and logic.. 20

Section 6 Attributes... 21
6.1 Introduction (informative) .. 21
6.2 Attribute syntax for interfaces .. 21

Section 7 Operators and Expressions.. 22
7.1 Introduction (informative) .. 22
7.2 Operator syntax... 22
7.3 Assignment, incrementor and decrementor operations... 22
7.4 Operations on logic and bit types ... 23
7.5 Real operators ... 23
7.6 Size.. 23
7.7 Sign ... 23
7.8 Operator precedence and associativity ... 23
7.9 Concatenation ... 24

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

vi Copyright 2002 Accellera. All rights reserved.

Section 8 Procedural Statements and Control Flow.. 25
8.1 Introduction (informative) .. 25
8.2 Blocking and nonblocking assignments ... 26
8.3 Selection statements.. 27
8.4 Loop statements .. 28
8.5 Jump statements .. 29
8.6 Named blocks and statement labels .. 29
8.7 Processes ... 30
8.8 Disable .. 30
8.9 Event control... 31
8.10 Procedural assign and deassign removal .. 32

Section 9 Processes.. 33
9.1 Introduction (informative) .. 33
9.2 Level sensitive logic ... 33
9.3 Latch sensitive logic ... 34
9.4 Edge sensitive logic .. 34
9.5 Continuous assignments ... 34
9.6 Dynamic processes ... 34
9.7 Process execution threads ... 35

Section 10 Tasks and Functions... 36
10.1 Introduction (informative) .. 36
10.2 Tasks ... 37
10.3 Functions... 39

Section 11 Assertions .. 42
11.1 Introduction (informative) .. 42
11.2 Procedural assertions .. 43
11.3 Immediate assertions... 44
11.4 Strobed assertions ... 45
11.5 Sequential assertions... 46
11.6 More expression sequences .. 49
11.7 Aborting assertions externally .. 49
11.8 Controlling assertions ... 50
11.9 System functions... 50

Section 12 Hierarchy... 51
12.1 Introduction (informative) .. 51
12.2 The $root top level .. 51
12.3 Module declarations.. 53
12.4 Nested modules... 54
12.5 Port declarations ... 55
12.6 Time unit and precision .. 56
12.7 Module instances .. 57
12.8 Port connection rules .. 62
12.9 Name spaces ... 63
12.10 Hierarchical names ... 63

Section 13 Interfaces ... 64
13.1 Introduction (informative) .. 64
13.2 Interface syntax... 65
13.3 Ports in interfaces.. 69
13.4 Modports ... 69

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. vii

13.5 Tasks and functions in interfaces.. 73
13.6 Parameterized interfaces ... 78
13.7 Access without Ports... 79

Section 14 Parameters .. 81
14.1 Introduction (informative) .. 81
14.2 Parameter declaration syntax .. 81

Section 15 Configuration libraries .. 83
15.1 Introduction (informative) .. 83
15.2 Libraries .. 83
15.3 Library map files... 83

Section 16 System tasks and system functions ... 84
16.1 Introduction (informative) .. 84
16.2 Expression size system function ... 84
16.3 Array querying system functions .. 84
16.4 Assertion severity system tasks .. 85
16.5 Assertion control system tasks.. 86
16.6 Assertion system functions ... 86

Section 17 Compiler Directives.. 88
17.1 Introduction (informative) .. 88
17.2 ‘define macros... 88

Section 18 Features under consideration for removal from SystemVerilog ... 89
18.1 Introduction (informative) .. 89
18.2 Defparam statements... 89
18.3 Procedural assign and deassign statements... 89

Annex A Formal Syntax.. 91

Annex B Keywords.. 119

Annex C Glossary .. 121

Annex D Bibliography... 123

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

viii Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 1

Section 1
Introduction to SystemVerilog

This document specifies the Accellera extensions for a higher level of abstraction for modeling and verifica-
tion with the Verilog Hardware Description Language. These additions extend Verilog into the systems space
and the verification space and was built on top of the work of the IEEE Verilog 2001 committee.

Throughout this document:

— “Verilog” or “Verilog-2001” refers to the IEEE Std. 1364-2001 standard for the Verilog Hardware Descrip-
tion Language

— “SystemVerilog” refers to the Accellera extensions to the Verilog-2001 standard.

This document numbers the generations of Verilog as follows:

— “Verilog 1.0” is the IEEE Std. 1364-1995 Verilog standard, which is also called Verilog-1995

— “Verilog 2.0” is the IEEE Std. 1364-2001 Verilog standard, commonly called Verilog-2001; this genera-
tion of Verilog contains the first significant enhancements to Verilog since its release to the public in 1990

— “SystemVerilog 3.0” is Verilog-2001 plus an extensive set of high-level abstraction extensions, as defined
in this document

The Accellera initiative to extend Verilog is an ongoing effort under the direction of the Accellera HDL+ Tech-
nical Subcommittee. This committee will continue to define additional enhancements to Verilog beyond Sys-
temVerilog 3.0.

SystemVerilog 3.0 is built on top of Verilog 2001. SystemVerilog improves the productivity, readability, and
reusability of Verilog based code. The language enhancements in SystemVerilog provide more concise hard-
ware descriptions, while still providing an easy route with existing tools into current hardware implementation
flows.

SystemVerilog adds several new constructs to Verilog-2001, including:

— C data types to provide better encapsulation and compactness of code

— int, char, typedef, struct, union, enum

— Enhancements to existing Verilog constructs, to provide tighter specifications

— Extensions to always blocks to include linting type features

— Logic (0, 1, X, Z) and bit (0, 1) data types

— Automatic/static specification on a per variable instance basis

— Procedural break, continue, return

— Interfaces to encapsulate communication and facilitate “Communication Oriented” design

— Dynamic processes for modeling pipelines

— A $root top level hierarchy which can have global definitions

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

2 Copyright 2002 Accellera. All rights reserved.

Section 2
Literal Values

2.1 Introduction (informative)

The lexical conventions for SystemVerilog literal values are extensions of those for Verilog. SystemVerilog
adds literal time values, literal array values, literal structures and enhancements to literal strings.

2.2 Literal value syntax

Syntax 2-1—Literal values (excerpt from Annex A)

time_literal ::= // from Annex A.8.4
unsigned_number time_unit

| fixed_point_number time_unit

time_unit ::= s | ms | us | ns | ps | fs

number ::= // from Annex A.8.7
decimal_number

| octal_number
| binary_number
| hex_number
| real_number

decimal_number ::=
unsigned_number

| [size] decimal_base unsigned_number
| [size] decimal_base x_digit { _ }
| [size] decimal_base z_digit { _ }

binary_number ::= [size] binary_base binary_value

octal_number ::= [size] octal_base octal_value

hex_number ::= [size] hex_base hex_value

sign ::= + | -

size ::= non_zero_unsigned_number

non_zero_unsigned_number ::= non_zero_decimal_digit { _ | decimal_digit}

real_number ::=
fixed_point_number

| unsigned_number [. unsigned_number] exp [sign] unsigned_number

fixed_point_number ::= unsigned_number . unsigned_number

exp ::= e | E

unsigned_number1 ::= decimal_digit { _ | decimal_digit }

string ::= " { Any_ASCII_Characters_except_new_line } " // from Annex A.8.8

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 3

2.3 Integer and logic literals

Literal integer and logic values can be sized or unsized, and follow the same rules for signedness, truncation
and left-extending as Verilog-2001.

SystemVerilog adds the ability to specify unsized literal single bit values with a preceding apostrophe (’), but
without the base specifier. All bits of the unsized value are set to the value of the specified bit.

’0, ’1, ’X, ’x, ’Z, ’z // sets all bits to this value

2.4 Real literals

The default type is real for fixed point format (e.g. 1.2), and exponent format (e.g. 2.0e10).

A cast can be used to convert literal real values to the shortreal type (e.g. shortreal’(1.2)). Casting
is described in section 3.8.

2.5 Time literals

Time is written in integer or fixed point format, followed without a space by a time unit (fs ps ns us ms s).
For example:

0.1ns
40ps

2.6 String literals

A string literal is enclosed in quotes and has its own data type. Non-printing and other special characters are
preceded with a backslash. SystemVerilog adds the following special string characters:

\v vertical tab
\f form feed
\a bell
\x02 hex number

A string literal can be assigned to a character, or a packed array, as in Verilog-2001. If the size differs, it is right
justified.

char c1 = "A" ; bit [7:0] d = "\n" ;
bit [0:11] [7:0] c2 = "hello world\n" ;

A string literal can be assigned to an unpacked array of characters, and a zero termination is added like in C. If
the size differs, it is left justified.

char c3 [0:12] = "hello world\n" ;

Packed and unpacked arrays are discussed in section 4. The difference between string literals and array literals
is discussed in section 2.7, which follows.

String literals can also be cast to a packed or unpacked array, which shall follow the same rules as assigning a
literal string to a packed or unpacked array. Casting is discussed in section 3.8.

2.7 Array literals

Arrays literals are similar to C initializers, but with the replicate operator ({{}}) allowed.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

4 Copyright 2002 Accellera. All rights reserved.

int n[1:2][1:3] = {{0,1,2},{3{4}}};

The nesting of braces must follow the number of dimensions, unlike in C. However, replicate operators can be
nested.

int n[1:2][1:3] = {2{{3{4}}}};

If the type is not given by the context, it must be specified with a cast.

typedef int [1:3] triple; // 3 integers packed together
b = triple’{0,1,2};

2.8 Structure literals

Structure literals are similar to C initializers. Structure literals must have a type, either from context or a cast.

typedef struct {int a; shortreal b;} ab;
ab c;
c = {0, 0.0}; // structure literal type determined from the left hand context
(c)

Nested braces should reflect the structure. For example:

ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Note that the C alternative {1, 1.0, 2, 2.0} is not allowed.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 5

Section 3
Data Types

3.1 Introduction (informative)

To provide for clear translation to and from C, SystemVerilog supports the C built-in types, with the meaning
given by the implementation C compiler. However, to avoid the duplication of int and long without causing
confusion, in SystemVerilog, int is 32 bits and longint is 64 bits. The C float type is called shortreal in
SystemVerilog, so that it will not be confused with the Verilog-2001 real type.

Verilog-2001 has net data types, which may have 0, 1, X or Z, plus 7 strengths, giving 120 values. It also has
variable data types such as reg, which have 4 values 0, 1, X, Z. These are not just different data types, they are
used differently. SystemVerilog adds another 4-value data type, called logic. See section 3.3.1.

Verilog-2001 provides arbitrary fixed length arithmetic using reg data types. The reg type can have bits at X
or Z, however, and so are less efficient than an array of bits, because the operator evaluation must check for X
and Z, and twice as much data must be stored. SystemVerilog adds a bit type which can only have bits with 0
or 1 values. See section 3.3.1 on 2-state data types.

Automatic type conversions from a smaller number of bits to a larger number of bits involve zero extensions if
unsigned or sign extensions if signed, and do not cause warning messages. Automatic truncation from a larger
number of bits to a smaller number does cause a warning message. Automatic conversions between logic and
bit do not cause warning messages. To convert a logic value to a bit, 1 converts to 1, anything else to 0.

User defined types are introduced by typedef and must be defined before they are used. Data types can also
be parameters to modules or interfaces, making them like class templates in object-oriented programming. One
routine can be written to reverse the order of elements in any array, which is impossible in C and in Verilog.

Structures and unions are complicated in C, because the tags have a separate name space. SystemVerilog fol-
lows the C syntax, but without the optional structure tags.

See also Section 4 on arrays.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

6 Copyright 2002 Accellera. All rights reserved.

3.2 Data type syntax

Syntax 3-1—data types (excerpt from Annex A)

3.3 Integer data types

SystemVerilog offers several integer data types, representing a hybrid of both Verilog and C data types:

3.3.1 2-state (two-value) and 4-state (four-value) data types

Types which can have unknown and high impedance values are called 4-state types. These are logic, reg and
integer. The other types do not have unknown values and are called 2-state types, for example bit and int.

The difference between int and integer is that int is 2-state logic and integer is 4-state logic. 4-state val-
ues have additional bits that encode the X and Z states. 2-state data types should simulate faster, take less

Table 3-1—Integer data types

char 2-state C data type, usually an 8 bit signed integer (ASCII) or a short int (Unicode)

shortint 2-state SystemVerilog data type, 16 bit signed integer

int 2-state SystemVerilog data type, 32 bit signed integer

longint 2-state SystemVerilog data type, 64 bit signed integer

byte 2-state SystemVerilog data type, 8 bit signed integer

bit 2-state SystemVerilog data type, user-defined vector size

logic 4-state SystemVerilog data type, user-defined vector size with different use rules from reg

reg 4-state Verilog-2001 data type, user-defined vector size

integer 4-state Verilog-2001 data type, at least 32 bit signed integer

data_type ::= // from Annex A.2.2.1
integer_vector_type [signing] { packed_dimension } [range]

| integer_atom_type [signing] { packed_dimension }
| type_declaration_identifier
| non_integer_type
| struct { { struct_union_member } }
| union { { struct_union_member } }
| enum { enum_identifier [= constant_expression]

{ , enum_identifier [= constant_expression] } }
| void

integer_type ::= integer_vector_type | integer_atom_type

integer_atom_type ::= byte | char | shortint | int | longint | integer

integer_vector_type ::= bit | logic | reg

non_integer_type ::= time | shortreal | real | realtime | $built-in

signing ::= [signed] | [unsigned]

simple_type ::= integer_type | non_integer_type | type_identifier

struct_union_member ::= data_type list_of_variable_identifiers_or_assignments ;

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 7

memory, and are preferred in some design styles.

3.3.2 Signed and unsigned data types

Integer types use integer arithmetic and can be signed or unsigned. This affects the meaning of certain opera-
tors such as ‘<’, etc.

int unsigned ui;
int signed si;

The data types char, byte, shortint, int, integer and longint default to signed. The data types bit,
reg and logic default to unsigned, as do arrays of these types.

Note that the signed keyword is part of Verilog-2001. The unsigned keyword is a reserved keyword in Ver-
ilog-2001, but is not utilized.

See also section 7, on operators and expressions.

3.4 Other basic data types

3.4.1 Time data types

Time is a special data type. It is a 64 bit integer of time steps. The default time step follows the rules of IEEE
Verilog standard. The time step can be changed by the timeprecision declaration. It can also be changed by
a ‘timescale directive.

The timeprecision declaration affects the local accuracy of delays.

module m;
timeprecision 0.1ns;
initial #10.11ns a = 1; // round to #10.1ns according to time precision

endmodule

The timeunit declaration is used to set the current time unit. When a literal time is expressed in SystemVer-
ilog, it can be given with explicit time units, e.g. 12ns. If no time units are specified, the literal number is mul-
tiplied by the current time unit. Time values are scaled to the time precision of the module, following the rules
of Verilog-2001. An integer or real variable is cast to a time value by using the integer or real as a delay.

For example:

#10.11; // multiply by time unit and round according to time precision

See section 12.6 for more information on setting the time units and time precision.

3.4.2 Real and shortreal data types

The real1 data type is from Verilog-2001, and is the same as a C double. The shortreal data type is a Sys-
temVerilog data type, and is the same as a C float.

3.4.3 Void data type

The void data type represents non-existent data. This type can be specified as the return type of functions,
indicating no return value.

1 The real and shortreal types are represented as described by IEEE 734-1985, an IEEE standard for floating point numbers.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

8 Copyright 2002 Accellera. All rights reserved.

3.5 User-defined types

Syntax 3-2—user-defined types (excerpt from Annex A)

The user can define a new type using typedef, as in C.

typedef int intP;

This can then be instantiated as:

intP a, b;

A type can be used before it is defined, provided it is first identified as a type by an empty typedef:

typedef foo;
foo f = 1;
typedef int foo;

Note that this does not apply to enumeration values, which must be defined before they are used.

If the type is defined within an interface, it must be re-defined locally before being used.

interface it;
typedef int intP;

endinterface

it it1;
typedef it1.intP intP;

User-defined type names must be used for complex data types in casting (see section 3.7, below), and as
parameters.

3.6 Enumerations

Syntax 3-3—enumerated types (excerpt from Annex A)

Enumerated data types provide the capability to abstractly declare strongly typed variables without either a
data type or data value(s) and later add the required data type and value(s) for designs that require more defini-
tion. Enumerated data types also can be easily referenced or displayed using the enumerated names as opposed
to the enumerated values.

type_declaration ::= // from Annex A.2.1.3
typedef data_type type_declaration_identifier ;

| typedef interface_identifier { [constant_expression] } . type_identifier
type_declaration_identifier ;

data_type ::= // from Annex A.2.2.1
...

| enum [integer_type [signing] { packed_dimension }]
{ enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 9

In the absence of a data type declaration, the default data type shall be int. Any other data type used with enu-
merated types shall require an explicit data type declaration.

An enumerated type defines a set of named values. In the following example, “light1” and “light2” are defined
to be variables of the anonymous (unnamed) enumerated int type that includes the three members: “red”, “yel-
low” and “green.”

enum {red, yellow, green} light1, light2; // anonymous int type

An enumerated name with x or z assignments assigned to an enum with no explicit data type declaration shall
be a syntax error.

// Syntax error: IDLE=2’b00, XX=2’bx <ERROR>, S1=2’b01??, S2=2’b10??
enum {IDLE, XX=’x, S1=2’b01, S2=2’b10} state, next;

An enum declaration of a 4-state type, such as integer, that includes one or more names with x or z assignments
shall be permitted.

// Correct: IDLE=2’b00, XX=2’bx, S1=2’b01, S2=2’b10
enum integer {IDLE, XX=’x, S1=2’b01, S2=2’b10} state, next;

An unassigned enumerated name that follows and enum name with x or z assignments shall be a syntax error.

// Syntax error: IDLE=2’b00, XX=2’bx, S1=??, S2=??
enum integer {IDLE, XX=’x, S1, S2} state, next;

The values can be cast to integer types, and increment from an initial value of 0. This can be overridden.

enum {bronze=3, silver, gold} medal; // silver=4, gold=5

The values can be set for some of the names and not set for other names. A name without a value is automati-
cally assigned an increment of the value of the previous name.

// c is automatically assigned the increment-value of 8
enum {a=3, b=7, c} alphabet;

If an automatically incremented value is assigned elsewhere in the same enumeration, this shall be a syntax
error.

// Syntax error: c and d are both assigned 8
enum {a=0, b=7, c, d=8} alphabet;

If the first name is not assigned a value, it is given the initial value of 0.

// a=0, b=7, c=8
enum {a, b=7, c} alphabet;

A sized constant can be used to set the size of the type. All sizes must be the same.

// silver=4’h4, gold=4’h5 (all are 4 bits wide)
enum {bronze=4’h3, silver, gold} medal4;

A type name can be given so that the same type can be used in many places.

typedef enum {NO, YES} boolean;
boolean myvar; // named type

Adding a constant range to the enum declaration can be used to set the size of the type. If any of the enum
members are defined with a different sized constant, this shall be a syntax error.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

10 Copyright 2002 Accellera. All rights reserved.

// Error in the bronze and gold member declarations
enum [3:0] {bronze=5’h13, silver, gold=3’h5} medal4;

// Correct declaration - bronze and gold sizes are redundant
enum [3:0] {bronze=4’h13, silver, gold=4’h5} medal4;

The type is checked in assignments, arguments and relational operators (which check the values). Like C, there
is no overloading of literals, so medal and medal4 cannot be defined in the same scope, since they contain the
same names.

3.7 Structures and Unions

Syntax 3-4—structures and unions (excerpt from Annex A)

Structure and union declarations follow the C syntax, but without the optional structure tags before the ‘{‘.

struct { bit[7:0] opcode; bit [23:0] addr; }IR; // anonymous structure defines
variable IR

IR.opcode = 1; // set field in IR.

Some additional examples of declaring structure and unions are:

typedef struct {
bit[7:0] opcode;
bit [23:0] addr;

} instruction; // named structure type
instruction IR; // define variable

typedef union { int i; shortreal f; } num; // named union type
num n;

n.f = 0.0; // set n in floating point format

typedef struct {
bit isfloat;
union { int i; shortreal f; } n; // anonymous type

} tagged; // named structure

tagged a[9:0]; // array of structures

A structure can be assigned as a whole, and passed to or from a function or task as a whole.

Section 2.8 discusses assigning initial values to a structure.

A packed structure consists of bit fields, which are packed together in memory without gaps. This means that
they are easily converted to and from bit vectors. An unpacked structure has an implementation-dependent

data_type ::= // from Annex A.2.2.1
...

| struct { { struct_union_member } }
| union { { struct_union_member } }

struct_union_member ::= data_type list_of_variable_identifiers_or_assignments ;

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 11

packing, normally matching the C compiler.

Like a packed array, a packed structure can be used as a whole with arithmetic and logical operators. The first
member specified is the most significant. The structures are declared using the packed keyword, which can be
followed by the signed or unsigned keywords, according to the desired arithmetic behavior, which defaults to
unsigned:

struct packed signed {
int a;
shortint b;
byte c;
bit [7:0] d;

} pack1; // signed, 2-state

struct packed unsigned {
time a;
integer b;
logic [31:0] c;

} pack2; // unsigned, 4-state

If any data type within a packed structure is masked, the whole structure is treated as masked. Any unmasked
members are converted as if cast, i.e. an X will be read as 0 if it is in a member of type bit. One or more ele-
ments of the packed array may be selected, assuming an [n-1:0] numbering:

pack1 [15:8] // c

Non-integer data types, such as real and shortreal, are not allowed in packed structures or unions. Nor are
unpacked arrays.

A packed structure can be used with a typedef.

typedef struct packed { // default unsigned
bit [3:0] GFC;
bit [7:0] VPI;
bit [11:0] VCI;
bit CLP;
bit [3:0] PT ;
bit [7:0] HEC;
bit [47:0] [7:0] Payload;
bit [2:0] filler;

} s_atmcell;

A packed union contains members that are packed structures or arrays of the same size. This ensures that you
can read back a union member that was written as another member. If any member is 4-state, the whole union
is 4-state. A packed union can also be used as a whole with arithmetic and logical operators, and its behavior is
determined by the signed or unsigned keyword, the latter being the default.

For example, a union can be accessible with different access widths:

typedef union packed { // default unsigned
s_atmcell acell;
bit [423:0] bit_slice;
bit [52:0][7:0] byte_slice;

} u_atmcell;

u_atmcell u1;
byte b; bit [3:0] nib;
b = u1.bit_slice[415:408]; // same as b = u1.byte_slice[51];
nib = u1.bit_slice [423:420]; // same as nib = u1.acell.GFC;

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

12 Copyright 2002 Accellera. All rights reserved.

Note that writing one member and reading another is independent of the byte ordering of the machine, unlike a
normal union of normal structures, which are C-compatible and have members in ascending address order.

3.8 Casting

Syntax 3-5—casting (excerpt from Annex A)

A data type may be changed by using a cast (’) operation. The expression to be cast must be enclosed in
parenthesis or within concatenation or replication braces.

int’(2.0 * 3.0)
shortint’{8’hFA,8’hCE}

A decimal number as a data type means a number of bits.

17’(x - 2)

The signedness can also be changed.

signed’(x)

A user-defined type can be used.

mytype’(foo)

When casting to a predefined type, the prefix of the cast must be the predefined type keyword. When casting to
a user-defined type, the prefix of the cast must be the user-defined type identifier.

When a shortreal is converted to an int, its value is rounded as in Verilog. So the conversion can lose
information. When a shortreal is converted to 32 bits, its bit pattern is preserved, which means it can be
converted back to the same value without any loss of information. This technique can also be used for struc-
tures, where the $bits attribute gives the size of a structure in bits (the $bits system function is discussed in
section 16.2):

typedef struct {
bit isfloat;
union { int i; shortreal f; } n; // anonymous type

} tagged; // named structure

typedef bit [$bits(tagged) - 1 : 0] tagbits; // tagged defined above

tagged a [7:0]; // unpacked array of structures

primary ::= // from Annex A.8.4
...

| simple_type_or_number ’ (expression)
| simple_type_or_number ’ { expression { , expression } }
| simple_type_or_number ’ { expression { expression } }

simple_type_or_number ::= // from Annex A.2.2.1
simple_type | number

simple_type ::= // from Annex A.2.2.1
integer_type | non_integer_type | type_identifier

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 13

tagbits t = tagbits’(a[3]); // convert structure to array of bits
a[4] = tagged’(t); // convert array of bits back to structure

Note that the bit data type loses X values. If these are to be preserved, the logic type should be used instead.

The size of a union in bits is the size of its largest member. The size of a logic in bits is 1.

For compatibility, the Verilog functions $itor, $rtoi, $bitstoreal, $realtobits, $signed,
$unsigned can also be used.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

14 Copyright 2002 Accellera. All rights reserved.

Section 4
Arrays

4.1 Introduction (informative)

In C, arrays are indexed from 0 by integers, or converted to pointers. Although the whole array can be initial-
ized, each element must be read or written separately in procedural statements.

In Verilog-2001, arrays are indexed from left-bound to right-bound. If they are vectors, they can be assigned as
a single unit, but not if they are arrays. Verilog-2001 allows multiple dimensions.

In Verilog-2001, all data types can be declared as arrays. The reg, wire and all other net types can also have a
vector width declared. A dimension declared before the object name is referred to as the “vector width” dimen-
sion. The dimensions declared after the object name are referred to as the “array” dimensions.

reg [7:0] r1 [1:256]; // [7:0] is the vector width, [1:256] is the array size

SystemVerilog enhances array declarations in several ways.

4.2 Packed and unpacked arrays

SystemVerilog uses the term “packed array” to refer to the dimensions declared before the object name (what
Verilog-2001 refers to as the vector width). The term “unpacked array” is used to refer to the dimensions
declared after the object name.

bit [7:0] c1; // packed array
real u [7:0]; // unpacked array

A packed array is a mechanism for subdividing a vector into subfields which can be conveniently accessed as
array elements. Consequently, a packed array is guaranteed to be represented as a contiguous set of bits. An
unpacked array may or may not be so represented. A packed array differs from an unpacked array in that, when
a packed array appears as a primary, it is treated as a single vector.

If a packed array is declared as signed, then the array viewed as a single vector shall be signed. A part-select of
a packed array shall be unsigned.

Packed arrays allow arbitrary length integer types, so a 48 bit integer can be made up of 48 bits. These integers
can then be used for 48 bit arithmetic. The maximum size of a packed array may be limited, but shall be at least
65536 (216) bits.

Packed arrays can only be made of the single bit types: bit, logic, reg, wire, and the other net types.
Unpacked arrays can be made up of any type.

Integer types with predefined widths cannot have packed array dimensions declared. These types are: char,
byte, shortint, int, longint, and integer. An integer type with a predefined width can be treated as a
single dimension packed array. The packed dimensions of these integer types shall be numbered down to 0,
such that the right-most index is 0.

byte c2; // same as bit [7:0] c2;
integer i1; // same as logic signed [31:0] i1;

The following operations can be performed on all arrays, packed or unpacked. The examples provided with
these rules assume that A and B are arrays.

— Reading and writing the array, e.g., A = B

— Reading and writing a slice of the array, e.g., A[i:j] = B[i:j]

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 15

— Reading and writing a variable slice of the array, e.g., A[x+:c] = B[y+:c]

— Reading and writing an element of the array, e.g., A[i] = B[i]

The following operations can be performed on packed arrays, but not on unpacked arrays. The examples pro-
vided with these rules assume that A is an array.

— Assignment from an integer, e.g., A = 8’b11111111;

— Treatment as an integer in an expression, e.g., (A + 3)

When assigning to an unpacked array, the source and target must be arrays with the same number of unpacked
dimensions, and the length of each dimension must be the same. Assignment to an unpacked array is done by
assigning each element of the source unpacked array to the corresponding element of the target unpacked
array. Note that an element of an unpacked array may be a packed array.

For the purposes of assignment, a packed array is treated as a vector. Any vector expression can be assigned to
any packed array. The packed array bounds of the target packed array do not affect the assignment. A packed
array cannot be assigned to an unpacked array.

4.3 Multiple dimensions

Like Verilog memories, the dimensions following the type set the packed size. The dimensions following the
instance set the unpacked size.

bit [3:0] [7:0] joe [1:10]; // 10 entries of 4 bytes (packed into 32 bit int)

can be used as follows:

joe[9] = joe[8] + 1; // 4 byte add
joe[7][3:2] = joe[6][1:0]; // 2 byte copy

Note that the dimensions declared following the type and before the name ([3:0][7:0] in the preceding
declaration) vary more rapidly than the dimensions following the name ([1:10] in the preceding declara-
tion). When used, the first dimensions ([3:0]) follow the second dimensions ([1:10]).

In a list of dimensions, the right-most one varies most rapidly, as in C. However a packed dimension varies
more rapidly than an unpacked one.

bit [1:10] foo1 [1:5]; // 1 to 10 varies most rapidly; compatible with
Verilog-2001 arrays

bit foo2 [1:5] [1:10]; // 1 to 10 varies most rapidly, compatible with C

bit [1:5] [1:10] foo3; // 1 to 10 varies most rapidly

bit [1:5] [1:6] foo4 [1:7] [1:8]; // 1 to 6 varies most rapidly, followed by
1 to 5, then 1 to 8 and then 1 to 7

Multiple packed dimensions can also be defined in stages with typedef.

typedef bit [1:5] bsix;
bsix [1:10] foo5; // 1 to 5 varies most rapidly

Multiple unpacked dimensions can also be defined in stages with typedef.

typedef bsix mem_type [0:3]; // array of four ’bsix’ elements
mem_type bar [0:7]; // array of eight ’mem_type’ elements

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

16 Copyright 2002 Accellera. All rights reserved.

bit [9:0] foo6;
foo5 = foo1[2]; // a 10 bit quantity.

As in Verilog-2001, a comma-separated list of array declarations can be made. All arrays in the list will have
the same data type and the same packed array dimensions.

bit [7:0] [31:0] foo7 [1:5] [1:10], foo8 [0:255]; // two arrays declared

If an index expression is of a 4-state type, and the array is of a 4-state type, an X or Z in the index expression
will cause a read to return X, and a write to issue a run-time warning. If an index expression is of a 4-state type,
but the array is of a 2-state type, an X or Z in the index expression shall generate a run-time warning and be
treated as 0. If an index expression is out of bounds, a run-time warning may be generated.

Out of range index values shall be illegal for both reading from and writing to an array of 2-state variables,
such as int. The result of an out of range index value is indeterminate. Implementations shall generate a warn-
ing if an out of range index occurs for a read or write operation.

4.4 Indexing and slicing of arrays

An expression can select part of a packed array, or any integer type, which is assumed to be numbered down to
0.

SystemVerilog uses the term “part select” to refer to a selection of one or more contiguous bits of a single
dimension packed array. This is consistent with the usage of the term “part select” in Verilog.

reg [63:0] data;
reg [7:0] byte2;
byte2 = data[23:16]; // an 8-bit part select from data

SystemVerilog uses the term “slice” to refer to a selection of one or more contiguous elements of an array. Ver-
ilog only permits a single element of an array to be selected, and does not have a term for this selection.

An single element of a packed or unpacked array can be selected using an indexed name.

bit [3:0] [7:0] j; // j is a packed array
byte k;
k = j[2]; // select a single 8-bit element from j

One or more contiguous elements can be selected using a slice name. A slice name of a packed array is a
packed array. A slice name of an unpacked array is an unpacked array.

bit busA [7:0] [31:0] ; // unpacked array of 8 32-bit vectors
int busB [1:0]; // unpacked array of 2 integers
busB = busA[7:6]; // select a slice from busA

The size of the part select or slice must be constant, but the position may be variable. The syntax of Verilog-
2001 is used.

int i = bitvec[j +: k]; // k must be constant.
a = {(b[c -: d]), e}; // d must be constant

Slices of an array can only apply to one dimension, but other dimensions may have single index values in an
expression.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 17

4.5 Array querying functions

SystemVerilog provides new system functions to return information about an array. These are: $left,
$right, $low, $high, $increment, $length, and $dimensions. These functions are described in section
16.3.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

18 Copyright 2002 Accellera. All rights reserved.

Section 5
Data Declarations

5.1 Introduction (informative)

There are several forms of data in SystemVerilog: literals (see section 2), parameters (see section 14), con-
stants, variables, nets, and attributes (see section 6)

C constants are either literals, macros or enumerations. There is also a const, keyword but it is not enforced in
C.

Verilog 2001 constants are literals, parameters, localparams and specparams. Verilog 2001 also has variables
and nets. Variables must be written by procedural statements, and nets must be written by continuous assign-
ments or ports.

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The
rules for implicit nets are the same as in Verilog-2001.

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage
allocated on entry to a task, function or named block and de-allocated on exit). C has the keywords static
and auto. SystemVerilog follows Verilog in respect of the static default storage class, with automatic tasks and
functions, but allows static to override a default of automatic for a particular variable in such tasks and
functions.

5.2 Data declaration syntax

Syntax 5-1—Data declaration syntax (excerpt from Annex A)

5.3 Constants

Constants are named data items which never change. There are three kinds of constants, declared with the key-
words localparam, specparam and const, respectively. All three can be initialized with a literal.

localparam char colon1 = ":" ;
specparam int delay = 10 ; // specparams are used for specify blocks
const logic flag = 1 ;

A local parameter is a constant which is calculated at elaboration time, and can depend upon parameters or
other local parameters at the top level or in the same module or interface.

data_declaration ::= // from Annex A.2.1.3
variable_declaration

| constant_declaration
| type_declaration

block_variable_declaration ::=
[lifetime] data_type list_of_variable_identifiers ;

| lifetime data_type list_of_variable_decl_assignments ;

variable_declaration ::=
[lifetime] data_type list_of_variable_identifiers_or_assignments ;

lifetime ::= static | automatic

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 19

A specify parameter is also calculated at elaboration time, but it may be modified by the PLI, and so cannot be
used to set parameters or local parameters.

A constant declared with the const keyword is calculated after elaboration. This means that it can contain an
expression with any hierarchical path name. This constant is like a variable which cannot be written.

const logic option = a.b.c ;

A constant expression contains literals and other named constants.

SystemVerilog enhancements to parameter constant declarations are presented in section 14. SystemVerilog
does not change localparam and specparam constants declarations. A const form of constant differs from
a localparam constant in that the localparam must be set during elaboration, whereas a const can be set
during simulation, such as in an automatic task.

5.4 Variables

A variable declaration consists of a data type followed by one or more instances.

shortint s1, s2[0:9];

A variable can be declared with an initializer, which must be a constant expression.

int i = 0;

In Verilog-2001, an initialization value specified as part of the declaration is executed as if the assignment
were made from an initial block, after simulation has started. Therefore, the initialization may cause an event
on that variable at simulation time zero.

In SystemVerilog, setting the initial value of a static variable as part of the variable declaration shall occur
before any initial or always blocks are started, and so does not generate an event. If an event is needed, an
initial block should be used to assign the initial values.

5.5 Scope and lifetime

Any data declared outside a module, interface, task, or function, is global in scope (can be used anywhere after
its declaration) and has a static lifetime (exists for the whole elaboration and simulation time).

SystemVerilog data declared inside a module or interface but outside a task, process or function is local in
scope and static in lifetime (exists for the lifetime of the module or interface). This is roughly equivalent to C
static data declared outside a function, which is local to a file.

Data declared in an automatic task, function or block has the lifetime of the call or activation and a local scope.
This is roughly equivalent to a C automatic variable. Data declared in a dynamic process is also automatic.

Data declared in a static task, function or block defaults to a static lifetime and a local scope. If an initializer is
used, the keyword static must be specified to make the code clearer.

Note that in SystemVerilog, data can be declared in unnamed blocks as well as in named blocks, but in the
unnamed blocks a hierarchical name cannot be used to access it.

Verilog-2001 allows tasks and functions to be declared as automatic, making all storage within the task or
function automatic. SystemVerilog allows specific data within a static task or function to be explicitly declared
as automatic. Data declared as automatic has the lifetime of the call or block, and is initialized on each entry
to the call or block.

SystemVerilog also allows data to be explicitly declared as static. Data declared to be static in an auto-

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

20 Copyright 2002 Accellera. All rights reserved.

matic task, function or in a process has a static lifetime and a scope local to the block. This is like C static data
declared within a function.

module msl;
int st0; // static
initial begin

int st1; //static
static int st2; //static
automatic int auto1; //automatic

end
task automatic t1();

int auto2; //automatic
static int st3; //static
automatic int auto3; //automatic

endtask
endmodule

Note that automatic variables cannot be used to trigger an event expression or be written with a nonblocking
assignment.

See also section 10 on tasks and functions.

5.6 Nets, regs, and logic

A net can only be written by one or more continuous assignments, primitive outputs or through module ports.
The resultant value of multiple drivers is determined by the resolution function of the net type. The value can
be overridden by a force statement. If a net on one side of a port is driven by a variable on the other side, a
continuous assignment is implied.

A reg variable can only be written by one or more procedural statements, including procedural (quasi-) contin-
uous assignments. The last write determines the value. The force statement overrides the assign statement
which overrides the normal assignments. A reg variable cannot be written through a port.

A logic variable can be written either by one continuous assignment or primitive output, or by one or more
procedural statements. The last write determines the value. A logic variable can be written through a port. It
shall be an error to have a continuous assignment and a procedural assignment write to the same logic vari-
able, even through ports. The assign statement overrides normal procedural assignments to a logic variable,
until deassigned.

Note the difference between a net declaration with assignment and a variable initialization:

wire w = vara & varb; // continuous assignment
reg r = consta & constb; // initial assignment
logic v = consta & constb; // initial assignment

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 21

Section 6
Attributes

6.1 Introduction (informative)

With Verilog-2001, users can add named attributes (properties) to Verilog objects, such as modules, instances,
wires, etc. Attributes can also be specified on SystemVerilog interfaces. SystemVerilog also defines a default
data type for attributes.

6.2 Attribute syntax for interfaces

Syntax 6-1—Interface attribute syntax (excerpt from Annex A)

An example of defining an attribute for an interface declaration is:

(* interface_att = 10 *) interface bus1.... endinterface

The default type of an attribute with no value is bit, with a value of 1. Otherwise, the attribute takes the type of
the expression.

The modport declaration can be preceded by an attribute instance, like any other interface item.

interface_declaration ::= // from Annex A.1.3
{ attribute_instance } interface interface_identifier [parameter_port_list]
[list_of_ports] ; [unit] [precision] { interface_item }
endinterface [: interface_identifier]

| { attribute_instance } interface interface_identifier [parameter_port_list]
[list_of_port_declarations] ; [unit] [precision] { non_port_interface_item }
endinterface [: interface_identifier]

interface_item ::= // from Annex A.1.6
port_declaration

| non_port_interface_item

attribute_instance ::= (* attr_spec { , attr_spec } *) // from Annex A.9.1

attr_spec ::=
attr_name = constant_expression

| attr_name

attr_name ::= identifier

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

22 Copyright 2002 Accellera. All rights reserved.

Section 7
Operators and Expressions

7.1 Introduction (informative)

The SystemVerilog operators are a combination of Verilog and C operators. In both languages, the type and
size of the operands is fixed, and hence the operator is of a fixed type and size. The fixed type and size of oper-
ators is preserved in SystemVerilog. This allows efficient code generation.

Verilog does not have assignment operators or incrementor and decrementor operators. SystemVerilog
includes the C assignment operators, such as +=, and the C incrementor and decrementor operators, ++ and --.

Verilog-2001 added signed nets and reg variables, and signed based literals. There is a difference in the rules
for combining signed and unsigned integers between Verilog and C. SystemVerilog uses the Verilog-2001
rules.

7.2 Operator syntax

Syntax 7-1—Operator syntax (excerpt from Annex A)

7.3 Assignment, incrementor and decrementor operations

In addition to the simple assignment operator, =, SystemVerilog includes the C assignment operators and spe-
cial bitwise assignment operators: +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, and >>>=. Assignment
operators may only be used with blocking assignments.

In SystemVerilog, an expression can include a blocking assignment, provided it does not have a timing control.
Note that such an assignment must be enclosed in parentheses to avoid common mistakes such as using a=b
for a==b, or a|=b for a!=b.

if ((a=b)) b = (a+=1);

a = (b = (c = 5));

SystemVerilog also includes the C incrementor and decrementor operators ++i, --i, i++, and i-- (provided
there is no timing control). These can be used in expressions without parentheses. These increment and decre-
ment operations behave as blocking assignments.

unary_operator ::= // from Annex A.8.6
+ | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_operator ::=
+ | - | * | / | % | == | != | === | !== | && | || | **

| < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | << | >>> | <<<

inc_or_dec_operator ::= ++ | --

unary_module_path_operator ::=

 ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_module_path_operator ::=

 == | != | && | || | & | | | ^ | ^~ | ~^

assignment_operator ::=
= | += | -= | *= | /= | %= | &= | |= | ^= | <<= | >>= | <<<= | >>>=

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 23

7.4 Operations on logic and bit types

When a binary operator has one operand of type bit and another of type logic, the result is of type logic. If
one operand is of type int and the other of type integer, the result is of type integer.

The operators != and == return an X if either operand contains an X or a Z, as in Verilog-2001. This is con-
verted to a 0 if the result is converted to type bit, e.g. in an if statement.

The unary reduction operators (& ~& | ~| ^ ~^) can be applied to any integer expression (including packed
arrays). The operators shall return a single value of type logic if the packed type is four valued, and of type
bit if the packed type is two valued.

int i;
bit b = &i;
integer j;
logic c = &j;

7.5 Real operators

Operands of type shortreal have the same operation restrictions as Verilog real operands. The unary oper-
ators ++ and -- can have operands of type real and shortreal (the increment or decrement is by 1.0). The
assignment operators +=, -=, *=, /= can also have operands of type real and shortreal.

If any operand is real, the result is real, except before the ? in the ternary operator. If no operand is real
and any operand is shortreal, the result is shortreal.

Real operands can also be used in the following expressions:

str.realval // structure or union member
realarray[intval] // array element

7.6 Size

The number of bits of an expression is determined by the operands and the context, following the same rules as
Verilog. In SystemVerilog, casting can be used to set the size context of an intermediate value.

With Verilog, some tools may issue a warning when the left and right hand sides of an assignment are different
sizes. Using the SystemVerilog size casting, these warnings can be prevented.

7.7 Sign

The following unary operators give the signedness of the operand: ~ ++ -- + -. All other operators shall fol-
low the same rules as Verilog for performing signed and unsigned operations.

7.8 Operator precedence and associativity

Operator precedence and associativity is listed in table 7-2, below. The highest precedence is listed first.

Table 7-2—Operator precedence and associativity

() [] . left

Unary ! ~ ++ -- + - & ~& && | ~| || ^ ~^ right

** left

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

24 Copyright 2002 Accellera. All rights reserved.

Note that & is higher precedence than ^, following the Verilog standard.

7.9 Concatenation

Braces ({ }) are used to show concatenation, as in Verilog. The concatenation is treated as a packed vector of
bits (or logic if any operand is of type logic). It can be used on the left hand side of an assignment or in an
expression.

logic log1, log2, log3;
{log1, log2, log3} = 3’b111;
{log1, log2, log3} = {1’b1, 1’b1, 1’b1}; // same effect as 3’b111

Software tools may generate a warning if the concatenation width on one side of an assignment is different
than the expression on the other side. The following examples can give warning of size mismatch:

bit [1:0] packedbits = {32’b1,32’b1}; // right hand side is 64 bits
int i = {1’b1, 1’b1}; //right hand side is 2 bits

Note that braces are also used for initializers of structures or unpacked arrays. Unlike in C, the expressions
must match element for element and the braces must match the structures and array dimensions. Each element
must match the type being initialized, so the following do not give size warnings:

bit unpackedbits [1:0] = {1,1}; // no size warning, bit can be set to 1
int unpackedints [1:0] = {1’b1,1’b1}; //no size warning, int can be set to 1’b1

A concatenation of unsized values shall be illegal, as in Verilog. However, an array initializer can use unsized
values within the braces, such as {1,1}.

The replication operator (also called a multiple concatenation) form of braces can also be used for initializers .
For example, {3{1}} represents the initializer {1, 1, 1}.

Refer to sections 2.7 and 2.8 for more information on initializing arrays and structures .

* / % left

+ - left

<< >> <<< >>> left

< <= > >= left

== != === !== left

& left

^ ~^ left

| left

&& left

|| left

?: right

= += -= *= /= %= &= ^= |= <<= >>= <<<= >>>= none

{,} concatenation

Table 7-2—Operator precedence and associativity (continued)

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 25

Section 8
Procedural Statements and Control Flow

8.1 Introduction (informative)

Procedural statements are introduced by one of:

initial // do this statement once

always, always_comb, always_latch, always_ff // loop forever (see section 9 on processes)

task // do these statements whenever the task is called

function // do these statements whenever the function is called and return a value

SystemVerilog has the following types of control flow within a process

— Selection, loops and jumps

— Task and function calls

— Sequential and parallel blocks

— Timing control

Verilog procedural statements are in initial or always blocks, tasks or functions.

Verilog includes most of the statement types of C, except for do...while, break, continue and goto.
Verilog has the repeat statement which C does not, and the disable. The use of the Verilog disable to
carry out the functionality of break and continue requires the user to invent block names, and introduces the
opportunity for error.

SystemVerilog adds C-like break, continue and return functionality, which do not require the use of block
names.

Loops with a test at the end are sometimes useful to save duplication of the loop body. SystemVerilog adds a
C-like do...while loop for this capability.

Verilog provides two overlapping methods for procedurally adding and removing drivers for variables: the
force/release statements and the assign/deassign statements. The force/release statements can also be
used to add or remove drivers for nets in addition to variables. A force statement targeting a variable that is
currently the target of an assign will override that assign; however, once the force is released, the assign’s
effect again will be visible.

The keyword assign is much more commonly used for the somewhat similar, yet quite different purpose of
defining permanent drivers of values to nets.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

26 Copyright 2002 Accellera. All rights reserved.

Syntax 8-1—statement syntax (excerpt from Annex A)

8.2 Blocking and nonblocking assignments

Syntax 8-2—blocking and nonblocking assignment syntax (excerpt from Annex A)

The following assignments are allowed in both Verilog-2001 and SystemVerilog:

#1 r = a;
r = #1 a;
r <= #1 a;
r <= a;

statement ::= [block_identifier :] statement_item // from Annex A.6.4

statement_item ::=
{ attribute_instance } blocking_assignment ;

| { attribute_instance } nonblocking_assignment ;
| { attribute_instance } procedural_continuous_assignments ;
| { attribute_instance } case_statement
| { attribute_instance } conditional_statement
| { attribute_instance } transition_to_state statement_or_null
| { attribute_instance } inc_or_dec_expression
| { attribute_instance } function_call /* must be void function */
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement
| { attribute_instance } jump_statement
| { attribute_instance } par_block
| { attribute_instance } procedural_timing_control_statement
| { attribute_instance } seq_block
| { attribute_instance } system_task_enable
| { attribute_instance } task_enable
| { attribute_instance } wait_statement
| { attribute_instance } process statement
| { attribute_instance } proc_assertion

statement_or_null ::=
statement

| { attribute_instance } ;

procedural_timing_control_statement ::=
delay_or_event_control statement_or_null

blocking_assignment ::= // from Annex A.6.2
variable_lvalue = delay_or_event_control expression

| operator_assignment

operator_assignment ::= variable_lvalue assignment_operator expression

assignment_operator ::=
= | += | -= | *= | /= | %= | &= | |= | ^= | <<= | >>= | <<<= | >>>=

nonblocking_assignment ::= variable_lvalue <= [delay_or_event_control] expression

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 27

@c r = a;
r = @c a;
r <= @c a;

SystemVerilog also allows a time unit to specified in the assignment statement, as follows:

#1ns r = a;
r = #1ns a;
r <= #1ns a;

It shall be illegal to make nonblocking assignments to automatic variables.

The size of the left-hand side of an assignment forms the context for the right hand side expression. If the left-
hand side is smaller than the right hand side, and information may be lost, a warning can be given.

8.3 Selection statements

Syntax 8-3—Selection statement syntax (excerpt from Annex A)

In Verilog, an if (expression) is evaluated as a boolean, so that if the result of the expression is 0 or X, the
test is considered false.

SystemVerilog adds the keywords unique and priority, which can be used before an if. If either keyword
is used, it shall be a run-time warning for no condition to match unless there is an explicit else. For example:

unique if((a==0) || (a==1)) $display("0 or 1");
else if (a == 2) $display("2");
else if (a == 4) $display("4"); // values 3,5,6,7 will cause a warning

priority if(a[2:1]==0) $display("0 or 1");
else if (a[2] == 0) $display("2 or 3");
else $display("4 to 7"); //covers all other possible values, so no warning

A unique if indicates that there should not be any overlap in a series of if...else...if conditions, allowing
the expressions to be evaluated in parallel. A software tool shall issue an error if it determines that there is a
potential overlap in the conditions.

conditional_statement ::= // from Annex A.6.6
[unique_priority] if (expression) statement_or_null [else statement_or_null]

| if_else_if_statement

if_else_if_statement ::=
[unique_priority] if (expression) statement_or_null
{ else [unique_priority] if (expression) statement_or_null }
[else statement_or_null]

case_statement ::= // from Annex A.6.7
[unique_priority] case (expression) case_item { case_item } endcase

| [unique_priority] casez (expression) case_item { case_item } endcase
| [unique_priority] casex (expression) case_item { case_item } endcase

case_item ::=
expression { , expression } : statement_or_null

| default [:] statement_or_null

unique_priority ::= unique | priority

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

28 Copyright 2002 Accellera. All rights reserved.

A priority if indicates that a series of if...else...if conditions shall be evaluated in the order listed. In
the preceding example, if the variable ‘a’ had a value of 0, it would satisfy both the first and second condi-
tions, requiring priority logic.

In Verilog, there are three types of case statements, introduced by case, casez and casex. With SystemVer-
ilog, each of these can be qualified by priority or unique. A priority case shall act on the first match
only. A unique case shall guarantee no overlapping case values, allowing the case items to be evaluated in
parallel. If the case is qualified as priority or unique, the simulator shall issue a warning message if an
unexpected case value is found. By specifying unique or priority, it is not necessary to code a default
case to trap unexpected case values. For example:

bit[2:0] a;
unique case(a) // values 3,5,6,7 will cause a run-time warning

0,1: $display("0 or 1");
2: $display("2");
4: $display("4");

endcase

priority casez(a)
2’b00?: $display("0 or 1");
2’b0??: $display("2 or 3");
default: $display("4 to 7");

endcase

The unique and priority keywords shall determine the simulation behavior. It is recommended that synthe-
sis follow simulation behavior where possible. Attributes may also be used to determine synthesis behavior.

8.4 Loop statements

Syntax 8-4—Loop statement syntax (excerpt from Annex A)

Verilog provides for, while, repeat and forever loops. SystemVerilog adds a do...while loop.

do statement while(condition) // as C

The condition can be any expression which can be treated as a boolean. It is evaluated after the statement.

In Verilog, the variable used to control a for loop must be declared prior to the loop. If loops in two or more
parallel procedures use the same loop control variable, there is a potential of one loop modifying the variable
while other loops are still using it.

SystemVerilog adds the ability to declare the for loop control variable within the for loop. This creates a
local variable within the loop. Other parallel loops cannot inadvertently affect the loop control variable. For
example:

loop_statement ::= // from Annex A.6.8
forever statement

| repeat (expression) statement_or_null
| while (expression) statement_or_null
| for (variable_decl_or_assignment ; expression ; variable_assignment) statement_or_null
| do statement while (expression)

variable_decl_or_assignment ::=
data_type list_of_variable_identifiers_or_assignments ;

| variable_assignment

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 29

module foo;

initial begin
for (int i = 0; i <= 255; i++)

...
end

initial begin
loop2: for (int i = 15; i >= 0; i--)

...
end

endmodule

The local variable declared within a for loop can be referenced hierarchically by adding a statement label
before the for loop (see section 8.6).

8.5 Jump statements

Syntax 8-5—Jump statement syntax (excerpt from Annex A)

SystemVerilog adds the C jump statements break, continue and return.

break // out of loop as C
continue // skip to end of loop as C
return expression // exit from a function
return // exit from a task or void function

The continue and break statements can only be used in a loop. The continue statement jumps to the end
of the loop and executes the loop control if present. The break statement jumps out of the loop.

The return statement can only be used in a task or function. In a function returning a value, the return must
have an expression of the correct type.

Note that SystemVerilog does not include the C goto statement.

8.6 Named blocks and statement labels

Syntax 8-6—Blocks and labels syntax (excerpt from Annex A)

jump_statement ::= // from Annex A.6.5
return [expression] ;

| break ;
| continue ;

par_block ::= // from Annex A.6.3
fork [: block_identifier] { block_item_declaration } { statement } join [: block_identifier]

seq_block ::=
begin [: block_identifier] { block_item_declaration } { statement } end [: block_identifier]

statement ::= [block_identifier :] statement_item

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

30 Copyright 2002 Accellera. All rights reserved.

Verilog allows a begin...end or fork...join statement block to be named. A named block is used to identify
the entire statement block. A named block creates a new hierarchy scope. The block name is specified after the
begin or fork keyword, preceded by a colon. For example:

begin : blockA // Verilog-2001 named block
...

end

SystemVerilog allows a matching block name to be specified after the block end or join keyword, preceded
by a colon. This can help document which end or join is associated with which begin or fork when there
are nested blocks. A name at the end of the block is not required. It shall be an error if the name at the end is
different than the block name at the beginning.

begin: blockB // block name after the begin or fork
...

end: blockB

SystemVerilog allows a label to be specified before any statement, as in C. A statement label is used to identify
a single statement. A statement label does not create a hierarchy scope. The label name is specified before the
statement, followed by a colon.

labelA: statement

A begin...end or fork...join block is considered a statement, and can have a statement label before the
block. This is not the same as a block name, however, because it does not create a hierarchy scope.

labelB: fork // label before the begin or fork
...

join : labelB

It shall be illegal to have both a label before a begin or fork and a block name after the begin or fork. A
label cannot appear before the end or join, as these keywords do not form a statement.

A statement with a label can be disabled using a disable statement. Disabling a statement shall have the
same behavior as disabling a named block.

8.7 Processes

Each initial and always block is a process. Each branch of a fork within such a block is also a process.
These are static processes and they can be explicitly named with a statement label as shown above.

A dynamic process can be created using the process keyword. This forks off a statement without waiting for
completion.

process statement

See Section 9 for more information about processes.

8.8 Disable

SystemVerilog has break and continue for a clean way to break out of or continue the execution of loops.
The Verilog-2001 disable can also be used to break out of or continue a loop, but is more awkward than using
break or continue. The disable is also allowed to disable a named block, which does not contain the dis-
able statement. If the block is currently executing, this causes control to jump to the statement immediately
after the block. If the block is a loop body, it acts like a continue. If the block is not currently executing, the
disable has no effect. The disable, break and continue statements shall not affect any nonblocking

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 31

assignments which have been started.

It shall be illegal to disable a function, because the return value would be uncertain. However, a function may
disable its calling block.

SystemVerilog has return from a task, but disable is also supported. If disable is applied to a named task,
all current executions of the task are disabled.

module ...
always always1: begin ... t1: task1(); ... end
...
endmodule

always begin
...
disable u1.always1.t1; // exit task1, which was called from always1 (static)

end

8.9 Event control

Syntax 8-7—Delay and event control syntax (excerpt from Annex A)

Any change in a variable or net can be detected using the @ event control, as in Verilog. If the expression eval-
uates to a result of more than one bit, a change on any of the bits of the result (including an x to z change) will
trigger the event control.

SystemVerilog adds an iff qualifier to the @ event control.

module latch (output logic [31:0] y, input [31:0] a, input enable);
always @(a iff enable == 1)

y <= a; //latch is in transparent mode
endmodule

delay_or_event_control ::= // from Annex A.6.5
delay_control

| event_control
| repeat (expression) event_control

delay_control ::=
delay_value

| # (mintypmax_expression)

event_control ::=
@ event_identifier

| @ (event_expression)
| @*
| @ (*)

event_expression ::=
expression [iff expression]

| hierarchical_identifier [iff expression]
| [edge] expression [iff expression]
| event_expression or event_expression
| event_expression , event_expression

edge ::= posedge | negedge | changed

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

32 Copyright 2002 Accellera. All rights reserved.

The event expression only triggers if the expression after the iff is true, in this case when enable is equal to
1. Note that such an expression is evaluated when clk changes, and not when enable changes. Also note
that iff has precedence over or. This can be made clearer by the use of parentheses.

If a variable or net is not of type logic, then posedge and negedge refer to transitions from 0 and to 0
respectively. If the variable or net is a packed array or structure, it is zero if all elements are 0.

SystemVerilog also allows the @ event control to explicitly state any change, using the changed keyword.

@(myvar) // triggers on any change to myvar

@(changed myvar) // triggers on any change to myvar

The @(changed expression) differs from @(expression) in that the changed keyword explicitly defines that
the event control only triggers on a change of the result of the expression. In certain types of expressions,
@(expression) can trigger on changes to operands of the expression that do not affect the result.

SystemVerilog allows assignment expressions to be used in an event control, e.g. @((a = b + c)). The
event control shall only be sensitive to changes in the result of the expression on the right-hand side of the
assignment. It shall not be sensitive to changes on the left-hand side expression.

8.10 Procedural assign and deassign removal

SystemVerilog currently supports the procedural assign and deassign statements. However, these state-
ments may be removed from future versions of the language. See section 18.3.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 33

Section 9
Processes

9.1 Introduction (informative)

Verilog-2001 has always and initial blocks which define static processes.

In an always block which is used to model combinational logic, forgetting an else leads to an unintended
latch. To avoid this mistake, SystemVerilog adds specialized always_comb and always_latch blocks,
which indicate design intent to simulation, synthesis and formal verification tools. SystemVerilog also adds an
always_ff block to indicate sequential logic.

In systems modeling, one of the key limitations of Verilog is the inability to create processes dynamically, as
happens in an operating system. Verilog has the fork .. join construct, but this still imposes a static limit.

SystemVerilog has both static processes, introduced by always, initial or fork, and dynamic processes
introduced by process.

SystemVerilog creates a thread of execution for each initial or always block, for each parallel statement in
a fork...join block and for each dynamic process. Each continuous assignment may also be considered its
own thread. Execution of each thread may be interrupted between statements at a semicolon, but a single state-
ment (not a block) containing no user task or function call is uninterrupted. This allows atomic test-and-set
using assignment operators in an if statement.

9.2 Level sensitive logic

SystemVerilog provides a special always_comb procedure for modeling combinational logic behavior. For
example:

always_comb
a = b & c;

always_comb
d <= #1ns b & c;

The always_comb procedure provides functionality that is different than a normal always procedure:

— There is an inferred sensitivity list that includes every variable read by the procedure.

— The variables written on the left-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

The SystemVerilog always_comb procedure differs from the Verilog-2001 always @* in the following ways:

— always_comb automatically executes once at time zero, whereas always @* waits until a change occurs
on a signal in the inferred sensitivity list.

— always_comb is sensitive to changes within the contents of a function, whereas always @* is only sensi-
tive to changes to the arguments of a function.

— Variables on the left-hand side of assignments within an always_comb procedure may not be written to by
any other processes, whereas always @* permits multiple processes to write to the same variable.

Software tools can perform additional checks to warn if the behavior within an always_comb procedure does
not represent combinational logic, such as if latched behavior may be inferred.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

34 Copyright 2002 Accellera. All rights reserved.

9.3 Latch sensitive logic

SystemVerilog also provides a special always_latch procedure for modeling latched logic behavior. For
example:

always_latch
if(ck) q <= d;

The always_latch procedure differs from a normal always procedure in the following ways:

— There is an inferred sensitivity list that includes every variable read by the procedure.

— The variables written on the left-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

Software tools may perform additional checks to warn if the behavior within an always_latch procedure does
not represent latched logic.

9.4 Edge sensitive logic

The SystemVerilog always_ff procedure can be used to model synthesizable sequential logic behavior. For
example:

always_ff @(posedge clock iff reset == 0 or posedge reset) begin
r1 <= reset ? 0 : r2 + 1;
...

end

The always_ff block imposes the restriction that only one event control is allowed. Software tools may per-
form additional checks to warn if the behavior within an always_ff procedure does not represent sequential
logic.

9.5 Continuous assignments

In Verilog, continuous assignments can only drive nets, and not variables.

SystemVerilog removes this restriction, and permits continuous assignments to drive nets, logic variables,
and any other type of variables, except reg variables. Nets can be driven by multiple continuous assignments,
or a mixture of primitives and continuous assignments. logic variables and other data types can only be
driven by one continuous assignment or one primitive output. It shall be an error for a variable driven by a con-
tinuous assignment or primitive output to have an initializer in the declaration or any procedural assignment.

9.6 Dynamic processes

The SystemVerilog dynamic process adds capability that behaves like a fork without a join. A dynamic pro-
cess is started as a separate thread, and execution of the current procedure or task continues while the process
is executing. The process does not block the flow of execution of statements within the procedure or task.
Dynamic processes allow the creation of multi-threaded processes, as opposed to multiple procedures, which
are static parallel processes.

A dynamic process shall be created by the process keyword, which is used as follows:

process statement

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 35

For example, the following task initiates an endless loop and returns immediately to the caller. The task can be
launched any number of times to display a selected location at every strobe.

task monitorMem(input int address);
process forever @strobe $display("address %h data %h", mem[address]);

endtask

The following example illustrates using a dynamic process to model a pipeline.

// pipeline module
module p(input clk, flush, input int x_in, y_in, z_in);

parameter int latency = 6, throughput = 2;
int z_out;
int processes = 0;

always begin
while (!flush) begin
process begin

int v2, v3, v4, v5; // lifetime matches process
processes++;
v2 = x_in + y_in;
v3 = x_in - z_in;
v4 = v2 * v3;
v5 = v4 * x_in;
repeat(latency) @ (posedge clk);
z_out <= v5;
processes--;

end
repeat(throughput) @(posedge clk);

end
wait(processes == 0); //wait for flush
end

endmodule

In the proceeding example, the while loop contains a delay of two clock cycles, from the repeat statement,
and this determines the pipeline throughput. Each iteration spawns a process which lasts six clock cycles, the
latency of the pipeline. The variable processes keeps a count of the number of currently active processes.
The pipeline flush is not complete until this count has fallen to zero.

SystemVerilog 3.0 does not provide a mechanism to disable a process once it has been started, but all instances
of a named block within a dynamic process can be disabled by referring to a named block.

9.7 Process execution threads

SystemVerilog creates a thread of execution for:

— Each initial block

— Each always block

— Each parallel statement in a fork...join statement group

— Each dynamic process

Each continuous assignment may also be considered its own thread.

Execution of each thread can be interrupted between statements at a semicolon, but a single statement (not a
block) containing no user task or function call shall not be interrupted. This allows atomic test-and-set using
assignment operators in an if statement.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

36 Copyright 2002 Accellera. All rights reserved.

Section 10
Tasks and Functions

10.1 Introduction (informative)

Verilog-2001 has static and automatic tasks and functions. Static tasks and functions share the same storage
space for all calls to the tasks or function within a module instance. Automatic tasks and function allocate
unique, stacked storage for each instance.

SystemVerilog adds the ability to declare automatic variables within static tasks and functions, and static vari-
ables within automatic tasks and functions.

SystemVerilog also adds:

— More capabilities for declaring task and function ports

— Function output and inout ports

— Void functions

— Multiple statements in a task or function without requiring a begin...end or fork...join block

— Returning from a task or function before reaching the end of the task or function

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 37

10.2 Tasks

Syntax 10-1—Task syntax (excerpt from Annex A)

A Verilog task declaration either has the formal arguments in parentheses (like ANSI C) or in declarations and
directions.

task mytask1 (output int x, input logic y);
...

endtask

task mytask2;
output x;
input y;
int x;
logic y;
...

endtask

Each formal argument has one of the following directions:

input // copy value in at beginning

output // copy value out at end

inout // copy in at beginning and out at end

task_declaration ::= // from Annex A.2.7
task [automatic] [interface_identifier .] task_identifier ;
{ task_item_declaration }
{ statement }
endtask [: task_identifier]

| task [automatic] [interface_identifier .] task_identifier (task_port_list) ;
{ block_item_declaration }
{ statement }
endtask [: task_identifier]

task_item_declaration ::=
block_item_declaration

| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;

task_port_list ::= task_port_item { , task_port_item }

task_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

task_prototype ::=

 task ({ attribute_instance } task_proto_formal
{ , { attribute_instance } task_proto_formal })

named_task_proto ::= task task_identifier (task_proto_formal { , task_proto_formal })

task_proto_formal ::=
input data_type [variable_declaration_identifier]

| inout data_type [variable_declaration_identifier]
| output data_type [variable_declaration_identifier]

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

38 Copyright 2002 Accellera. All rights reserved.

With SystemVerilog, there is a default direction of input if no direction has been specified. Once a direction
is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs.

task mytask3(a, b, output logic [15:0] u, v);
...

endtask

Each formal argument also has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is logic, which is compatible with Verilog. SystemVerilog allows an array to
be specified as a formal argument to a task. For example:

// the resultant declaration of b is input [3:0][7:0] b[3:0]
task mytask4(input [3:0][7:0] a, b[3:0], output [3:0][7:0] y[1:0]);

...
endtask

Verilog-2001 allows tasks to be declared as automatic, so that all formal arguments and local variables are
stored on the stack. SystemVerilog extends this capability by allowing specific formal arguments and local
variables to be declared as automatic within a static task, or by declaring specific formal arguments and local
variables as static within an automatic task.

With SystemVerilog, multiple statements can be written between the task declaration and endtask, which
means that the begin end can be omitted. If begin end is omitted, statements are executed sequen-
tially, the same as if they were enclosed in a begin end group. It shall also be legal to have no statements at
all.

In Verilog, a task exits when the endtask is reached. With SystemVerilog, the return statement can be used to
exit the task before the endtask keyword.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 39

10.3 Functions

Syntax 10-2—Function syntax (excerpt from Annex A)

A Verilog function declaration either has the formal arguments in parentheses (like ANSI C) or in declarations
and directions:

function logic [15:0] myfunc1(int x, int y);
...

endfunction

function logic [15:0] myfunc2;
input int x;
input int y;
...

endfunction

function_declaration ::= // from Annex A.2.6
function [automatic] [signing] [range_or_type]
[interface_identifier .] function_identifier ;
{ function_item_declaration }
{ function_statement }
endfunction [: function_identifier]

| function [automatic] [signing] [range_or_type]
[interface_identifier .] function_identifier (function_port_list) ;
{ block_item_declaration }
{ function_statement }
endfunction [: function_identifier]

function_item_declaration ::=
block_item_declaration

| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;

function_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

function_port_list ::= function_port_item { , function_port_item }

function_prototype ::= function data_type (list_of_function_proto_formals)

named_function_proto::= function data_type function_identifier (list_of_function_proto_formals)

list_of_function_proto_formals ::=
[{ attribute_instance } function_proto_formal { , { attribute_instance }
function_proto_formal }]

function_proto_formal ::=
input data_type [variable_declaration_identifier]

| inout data_type [variable_declaration_identifier]
| output data_type [variable_declaration_identifier]
| variable_declaration_identifier

range_or_type ::=
{ packed_dimension } range

| data_type

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

40 Copyright 2002 Accellera. All rights reserved.

SystemVerilog extends Verilog functions to allow the formal arguments to be inputs or outputs. Function argu-
ments are all passed by value, i.e. copied.

input // copy value in at beginning

output // copy value out at end

inout // copy in at beginning and out at end

Function declarations default to the formal direction input if no direction has been specified. Once a direction
is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

function logic [15:0] myfunc3(int a, int b, output logic [15:0] u, v);
...

endfunction

Each formal argument has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is logic, which is compatible with Verilog. SystemVerilog allows an array to
be specified as a formal argument to a function, for example:

function [3:0][7:0] myfunc4(input [3:0][7:0] a, b[3:0]);
...

endfunction

In Verilog, functions must return values. The return value is specified by assigning a value to the name of the
function.

function [15:0] myfunc1 (input foo);
myfunc1 = 16’hbeef; //return value is assigned to function name

endfunction

SystemVerilog allows functions to be declared as type void, which do not have a return value. For non-void
functions, a value can be returned by assigning the function name to a value, as in Verilog, or by using return
with a value. The return statement shall override any value assigned to the function name. When the return
statement is used, non-void functions must specify an expression with the return.

function [15:0] myfunc2 (input foo);
return 16’hbeef; //return value is specified using return statement

endfunction

In SystemVerilog, a function return can be a structure or union. In this case, a hierarchical name used inside the
function and beginning with the function name is interpreted as a member of the return value. If the function
name is used outside the function, the name indicates the scope of the whole function. If the function name is
used within a hierarchical name, it also indicates the scope of the whole function.

Function calls are expressions unless of type void, which are statements:

a = b + myfunc1(c, d); //call myfunc1 (defined above) as an expression

myprint(a); //call myprint (defined below) as a statement

function void myprint (int a);
...

endfunction

With SystemVerilog, a non-void function call can also be used as a statement, but this can result in a warning
message.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 41

SystemVerilog allows multiple statements to be written between the function header and endfunction,
which means that the begin...end can be omitted. If begin...end is omitted, statements are executed sequen-
tially, as if they were enclosed in a begin...end group. It is also legal to have no statements at all, in which
case the function returns the current value of the implicit variable that has the same name as the function.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

42 Copyright 2002 Accellera. All rights reserved.

Section 11
Assertions

11.1 Introduction (informative)

An assertion is a statement that a property must be true. There are two kinds of assertions: concurrent asser-
tions which state that the property must be always be true, e.g. throughout a simulation, and procedural asser-
tions which are incorporated in procedural code and apply only for a limited time or under limited conditions.

There are various applications of assertions. They can be included in the design, to document the assumptions
made by the designer and to facilitate “white box” testing. They can be outside the design, either in a testbench
to check the response of the design to the stimulus, or to control a tool such as a stimulus generator or a model
checker.

Concurrent assertions can be coded as modules in a library, but this limits the complexity of the property that
can be expressed easily. It is more difficult to code procedural assertions as a library of tasks in Verilog,
because events cannot be arguments, each assertion may need static data, and tasks block.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 43

11.2 Procedural assertions

Syntax 11-1—Assertion syntax (excerpt from Annex A)

SystemVerilog provides four kinds of procedural assertions, which allow the user to test boolean expressions
or sequences of boolean expressions, and perform some action based on whether the expression or sequence is
true or false. Immediate assertions test the value of a boolean expression at the time the statement is executed,
and may be used in always and initial blocks, tasks and functions. Strobed assertions schedule the evaluation

proc_assertion ::= // from Annex A.6.10
immediate_assert

| strobed_assert
| clocked_immediate_assert
| clocked_strobed_assert

immediate_assert ::= assert (expression)
statement_or_null
[else statement_or_null]

strobed_assert ::= assert_strobe (expression)
restricted_statement_or_null
[else restricted_statement_or_null]

clocked_immediate_assert ::= assert (expr_sequence) step_control
statement_or_null
[else statement_or_null]

clocked_strobed_assert ::= assert_strobe (expr_sequence) step_control
restricted_statement_or_null
[else restricted_statement_or_null]

restricted_statement_or_null ::=
restricted_statement

| { attribute_instance } ;

restricted_statement ::=
[block_identifier :] restricted_statement_item

restricted_statement_item ::=
{ attribute_instance } proc_assertion

| { attribute_instance } system_task_enable
| { attribute_instance } delay_or_event_control statement
| { attribute_instance } restricted_seq_block

restricted_seq_block ::= begin [: block_identifier] { block_item_declaration }{ restricted_statement }
end [: block_identifier]

expr_sequence ::=
expression

| [constant_expression]
| range
| expr_sequence ; expr_sequence
| expr_sequence * [constant_expression]
| expr_sequence * range
| (expr_sequence)

step_control ::=
@@ event_identifier

| @@ (event_expression)

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

44 Copyright 2002 Accellera. All rights reserved.

of the expression to be delayed until the end of the current timeslice, to allow for glitches to settle. Strobed
assertions may be used in initial and always blocks and tasks, but not in functions, since functions must
return immediately.

To test sequences of expressions, it is necessary to specify a sampling clock event on which to test each ele-
ment of the sequence. Therefore, Clocked Immediate and Clocked Strobed assertions are added to allow pro-
gressive evaluation of sequences of expressions. Since these clocked assertions, by definition, take time, they
cannot be used in functions. Clocked immediate assertions evaluate each expression in the sequence when the
clock event triggers, and clocked strobed assertions evaluate each expression at the end of the timeslice at
which the event triggers.

11.3 Immediate assertions

The immediate assert statement is a test of an expression performed when the statement is executed in the pro-
cedural code. The expression is treated as a condition like in an if statement.

[identifier :] assert (expression) [pass_statement] [else fail_statement]

The pass statement is executed if the assertion succeeds, i.e. the expression evaluates to true. As with the if
statement, if the expression evaluates to ’X’, ’Z’ or ’0’, then the assertion fails. The pass statement may, for
example, record the number of successes for a coverage log, but may be omitted altogether. If the pass state-
ment is omitted, then no action is taken if the assert expression is true. The fail statement is executed if the
assertion fails (i.e. the expression does not evaluate to a known, non-zero value) and can be omitted. The
optional assertion label (identifier and colon) creates a notional named block around the assertion statement (or
any other SystemVerilog statement) and can be displayed using the %m format code.

assert_foo : assert (foo) $display("%m passed"); else $display("%m failed");

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity
associated with it. By default, the severity of an assertion failure is “error”. Other severity levels may be spec-
ified by including one of the following severity system tasks in the fail statement.

— $fatal is a run-time Fatal, which terminates the simulation with an error code. The first argument passed
to $fatal shall be consistent with the argument to $finish.

— $error is a Run-time Error.

— $warning is a Run-time Warning, which can be suppressed in a tool-specific manner.

— $info indicates that the assertion failure carries no specific severity.

The syntax for these system tasks is shown in section 16.4.

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the specific failure, which shall include the following information:

— The file name and line number of the assertion statement,

— The hierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is
called.

Each system task can also include additional user-specified information using the same format as the Verilog
$display.

If more than one of these system tasks is included in the else clause, then each shall be executed as specified.

If an assertion fails and no else clause is specified, the tool shall, by default, call $error, unless a tool-spe-
cific command-line option is enabled to suppress the failure.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 45

If the severity system task is executed at a time other than when the assertion fails, the actual failure time of the
assertion can be recorded and displayed programmatically. For example:

time t;

always @(posedge clk)
if(state == REQ)

assert(req1 || req2)
else begin

t = $time;
#5 $error("assert failed at time %0t",t);

end

If the assertion fails at time 10, the error message will be printed at time 15, but the user-defined string printed
will be “assert failed at time 10”.

The display of messages of warning and info types can be controlled by a tool-specific command-line option.

Since the fail statement, like the pass statement, is any legal SystemVerilog procedural statement, it can also be
used to signal a failure to another part of the testbench.

assert (myfunc(a,b)) count1 = count + 1; else ->event1;
assert (y == 0); else flag = 1;

The assert statement serves as guidance to non-simulation tools that the condition should be true. The second
statement above is equivalent to:

if (y!=0) begin flag = 1; end

11.4 Strobed assertions

If an immediate assertion is in code triggered by a timing control that happens at the same time as a blocking
assignment to the data being tested, there is a risk of the wrong value being sampled. For example:

always @(posedge clock) a = a + 1; // blocking assignment
always @(posedge clock) begin

....
assert (a < b);

end

This can be solved by using a strobed assertion, which waits in the background until the end of the time slot,
like the Verilog $strobe system task.

always @(posedge clock) begin
....
cas:assert_strobe (a < b);

end

Strobed assertions can have pass or fail statements like immediate assertions. However, the statements are
restricted to another assertion statement, a system task call, a statement preceded by a delay control or an event
control, or sequential block containing them. This is because the statement happens after the assertion is eval-
uated, at the end of the time slot, and hence must not create more events at that time slot or change values.
Statements which cause additional events to occur at the current time shall be an error.

The example below illustrates the effect of blocking and nonblocking assignments on immediate and strobed
assertions. The immediate assertions are like $display statements and the strobed assertions are like
$strobe statements.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

46 Copyright 2002 Accellera. All rights reserved.

module test;
reg [3:0] a=0; c=0, d=0;
reg clk = 0;
wire b;

initial begin
#10 clk = 1;
forever #5 clk = !clk; // posedge clk at 10,20,30,40...

end

assign b = a+1;

always @(posedge clk) begin
a1: assert(c<3); // fails at time 40
c = c+1;
a2: assert(c<3); // fails at time 30
a <= a+1;
a3: assert(a<3); // fails at time 40
a4: assert(b<3); // fails at time 40
a5: assert_strobe(a<3); // fails at time 30
a6: assert_strobe(b<3); // fails at time 30

end

always @(a) begin // models transient behavior on comb. nets
d = a+2; // spikes to 2 at 0, 3 at 10, 4 at 20
assert(d<3); // fails at time 10
d = d-1; // settles to 1 at 0, 2 at 10, 3 at 20
assert(d<3); // fails at time 20

end

always @(d) assert_strobe (d<3); // fails at time 20

endmodule

11.5 Sequential assertions

In addition to assertions about single expressions, it is often useful to assert sequences of expressions over
time. One way of doing this is to use nested immediate assertions, where each subsequent assertion is the pass
statement of the previous assertion.

always @(posedge clk or negedge rst)
if(state == REQ)

a7: assert(req1) // no semicolon
@(posedge clk) assert(gnt)
@(posedge clk) assert(!req1);

The above example verifies the sequence that, if state is equal to REQ, the req1 signal must be true immedi-
ately, then on the next posedge clk, gnt must be true and on the following posedge clk, req must be false.
Note that the assertion statement itself is nonblocking, so the sequence in assertion a7 is equivalent to:

always @(posedge clk or negedge rst)
if(state == REQ)
a8: assert(req1)
process

@(posedge clk) assert (gnt)
@(posedge clk) assert(!req1);

To simplify this complex nested assertion, a sequential regular expression is used in the assert statement.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 47

Sequential regular expressions require a step control event expression to specify the timing between evalua-
tions of each element in the regular expression. Using a sequential regular expression, the assertion a8 could
be rewritten as:

always @(posedge clk or negedge rst)
if(state == REQ)

a9: assert(req1;gnt;!req1) @@(posedge clk);
// note the @@ token to distinguish the step control from the pass statement

A sequential regular expression is a semicolon-delimited list of expressions. The first expression in the list is
evaluated immediately when the assert statement is executed. The other subsequent expressions are evaluated
one at a time on successive occurrences of the step control event expression. In assertion a9 above, req1 is
evaluated immediately when the assert statement is executed, just as for an immediate assertion, then gnt is
evaluated on the next posedge clk event, and so on.

The ’@@’ token is introduced to distinguish the step control from an ordinary event control at the start of the
pass statement. Consider the following:

always @(posedge clock or negedge rst)
if(state == REQ)

a10: assert (req1)
@(posedge clk) // This is an event control in the pass statement

$display("Hello at time %t", $time);

In this example, the “@(posedge clock)” in the pass statement causes the display action to occur on the
next posedge of clock after the assertion succeeds. Therefore, a new token is required to distinguish the asser-
tion sequence step control from the pass statement.

Note that, since the first expression is evaluated immediately, assertion a9 above is equivalent to:

always @(posedge clk or negedge rst)
if(state == REQ)

assert(req1)
assert(1;gnt;!req1) @@(posedge clk);

The sequence notation “(1;<expression_or_sequence>)” is a convenient shorthand, indicating that
the <expression_or_sequence> is to be evaluated on the next occurrence of the step control event.
This is because the expression ‘1’ is evaluated immediately and is always true.

Sequential assertions using the assert keyword are called clocked immediate assertions, since the expres-
sions are evaluated as with immediate assertions. Similarly, clocked strobed assertions may be written using
the assert_strobe keyword, in which each expression in the sequence is evaluated either at the end of the
timeslice in which the assertion is executed or in which the step control event occurs. The pass and fail state-
ments of clocked strobed assertions have the same restrictions as strobed assertions.

Specifying an explicit step control for a sequence makes it possible to use clocked assertions in combinational
always blocks.

always @(foo,bar)
assert_strobe (a;b;c) @@(posedge clk);
// look for a when foo or bar changes, then look for b on next posedge clk

Since it is common for combinational always blocks to be executed multiple times in a single timestep as the
signals in the event trigger expression settle, it is common to use strobed assertions in combinational always
blocks. Immediate assertions are commonly used in clocked always blocks.

Note that to avoid races, the variables read in clocked immediate assertions should be written by nonblocking
assignments. Expressions in clocked strobed assertions are always sampled at the end of the timestep, so no
race conditions should occur.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

48 Copyright 2002 Accellera. All rights reserved.

An assertion could be executed twice in the same timestep via a zero-delay loop or a combinational always
block, for example. If a clocked immediate assertion is executed more than once at the same timestep, the first
expression in the sequence will be re-evaluated. If a clocked strobed assertion is executed more than once at
the same timestep, the first expression in the sequence will be evaluated once at the end of the timestep.

An assertion shall only spawn a single process to evaluate the next expression in the sequence at the next step
control event. If the step control event occurs multiple times at the same timestep, then in a clocked immediate
assertion the current expression in the sequence shall be re-evaluated. In a clocked strobed assertion, the cur-
rent expression will still be evaluated only once at the end of the timestep. The next expression in the sequence
shall not be evaluated until the step control occurs in a later timestep.

As mentioned above, the execution of a sequential assertion spawns a process that monitors each event in the
sequence when the step control event occurs. If the sequential assert statement is executed again before the
sequence spawned by the original execution has expired, then a new process shall be spawned that looks for
the sequence starting at the current timestep. It is therefore possible to have multiple processes in-flight, each
monitoring the same sequence, but offset in time. It is possible for these multiple processes to be satisfied by
the same sequential behavior, even though the processes are offset in time. In such a case, both processes shall
terminate at the same timestep, in which both sequences are satisfied. Consider:

module top;
reg clk = 0;
reg a,b,c;

initial begin
#10 clk = 1;
forever begin

clk = 0;
clk = 1; // 2 posedges clk at 10,20,30,40...
#5 clk = 0;
#5 clk = 1;

end
end

always @(posedge clk)
assert(a;b;c) @@(posedge clk);
// ’a’ is evaluated only once at 10, ’b’ once at 20, ’c’ once at 30

Note that the step control expression may be any valid event expression in SystemVerilog. The following
assertions all use valid step control expressions:

bit clk;
event ev1;

always @(posedge clk or negedge reset) begin
assert (a;b;c) @@(negedge clk); // sequence sampled on negedge clk
assert (a;b;c) @@(clk); // sequence sampled on any edge of clk
assert (a;b;c) @@(ev1); // sequence sampled when event ev1 fires
a11: assert(a;b;c) @@(posedge clk iff !rst);

// sequence sampled on posedge clk if rst == 0
end

Note the use of the iff operator in assertion a11 above. In effect, this allows a “gated clock” to control the
assertion without the user having to declare the gated clock explicitly (see section 8.9). Because this could
have significant impact on the ability of Formal Verification tools to evaluate the assertion successfully, it is
recommended that this construct be used only for simulation.

This flexibility also allows nested assertions to use different clocks:

always @(posedge clk) begin

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 49

assert (a;b) @@(posedge clk) // on posedge clk
assert (1;c;d) @@(negedge clk); // look for c and d on negedge clk
assert (e;f) @@(posedge clk2)
assert (1;g;h) @@(ev1);

end

11.6 More expression sequences

A number of steps can be skipped either by writing expressions which are always true:

assert (a;1;1;c) @@(posedge clk); // two steps between a and c

or by using the notation [n] to count the number of steps:

assert (a;[2];c) @@(posedge clk); // two steps between a and c
assert (a;[1];[1];c) @@(posedge clk); // two steps between a and c

Note that in [n], the n must be a non-negative literal or a constant expression. [0] has no effect. The number of
steps to be skipped may also be expressed using [min:max], where the minimum number of steps must be
greater than or equal to zero. Both min and max must be a literal or constant expression.

assert (a;[0:10];b) @@(posedge clk);
// b occurs between the next and 11th clock edges, inclusive

If an expression must be repeated a defined number of times, this can be expressed with a trailing *[n]. If it can
be repeated a minimum or maximum number of times, this can be expressed with a trailing *[min:max]. These
repetition counts must also be literals or constant expressions.

assert ((a; b)*[5]) @@(posedge clk); // a;b;a;b;a;b;a;b;a;b
assert ((a*[0:3];b;c)) @@(posedge clk); // equivalent to

// (b;c) or (a;b;c) or (a;a;b;c) or (a;a;a;b;c).

This means that a sequence a;ab;a;b;c; will pass. The expression sequence is not equivalent to ((a &&
!b)* [0:3];b;c), which would fail the same sequence.

The rules for specifying repeat counts are summarized as:

— Each form of repeat count specifies a minimum and maximum number of occurrences

— expr*[n:m], where n is the minimum, m is the maximum

— expr*[n], same as expr*[n:n]

— [n], same as 1*[n:n]

— The sum of the minimum repeat counts for all terms in a sequence must be greater than 0

— The sequence as a whole cannot be empty

— The last term in a sequence shall not have a min:max range of repetition. If it does, it shall be an error.

11.7 Aborting assertions externally

A named assertion can be disabled like any other named SystemVerilog block. If this is done before the
expression sequence has finished, it means that neither the pass statement nor the fail statement shall be exe-
cuted.

disable cas;

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

50 Copyright 2002 Accellera. All rights reserved.

Note that if the disable is applied at the same simulation time step as the last clock step of a sequence, there
is a race in the case of an immediate assertion, but a strobed assertion is always disabled.

If the pass or fail statement is executing when the disable is executed, the statement shall be disabled, just as if
the statement were in another named block that gets disabled.

If a sequential assertion has been executed multiple times before the sequence has expired, then all instances of
the assertion shall be disabled when the assertion is disabled.

11.8 Controlling assertions

System tasks are provided to limit assertion checking to part of the design and part of the simulation time.

The $assertoff system task stops the checking of all specified assertions. When these assertions are encoun-
tered before a subsequent $asserton, the assert statement shall be ignored. Neither the pass statement nor the
fail statement shall be executed. An assertion that is already executing, including execution of the pass or fail
statement, is not affected by $assertoff.

The $assertkill system task disables all specified assertions and prevents them from executing until a sub-
sequent $asserton. As with disable, the checking of the sequence is aborted, and neither the pass nor fail
statement is executed.

The $asserton system task re-enables the execution of all specified assertions.

The assertion control system tasks may be used with or without arguments. When invoked with no arguments,
the system task refers to all assertions throughout the model. Refer to section 16.5 for the syntax of these sys-
tem tasks.

Assertions are on by default until turned off. When an assertion control task is specified with arguments, the
first argument indicates how many levels of the hierarchy below each specified module instance to turn on or
off. Subsequent arguments specify which scopes of the model in which to control assertions. These arguments
can specify entire modules or individual named assertions within a module. Setting the first argument to 0
causes all assertions in the specified module and in all module instances below the specified module to be
affected. The argument 0 applies only to subsequent arguments which specify module instances, and not to
individual assertions.

11.9 System functions

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot (<expression>) returns true if only one and only one bit of expression is high.

— $onehot0(<expression>) returns true if at most one bit of expression is low.

— $inset (<expression>, <expression> {, <expression> }) returns true if the first expression is equal to at
least one of the subsequent expression arguments.

— $insetz(<expression>,<expression> {, <expression> }) returns true if the first expression is equal to at
least other expression argument. Comparison is performed using casez semantics, so ‘z’ or ‘?’ bits are
treated as don’t-cares.

— $isunknown(<expression>) returns true if any bit of the expression is ‘x’. This is equivalent to
^<expression> === ’bx.

All of the above system functions have a return type of bit. A return value of 1’b1 indicates true, and a return
value of 1’b0 indicates false.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 51

Section 12
Hierarchy

12.1 Introduction (informative)

Verilog has a simple organization. All data, functions and tasks are in modules except for system tasks and
functions, which are global, and may be defined in the PLI. A Verilog module can contain instances of other
modules. Any uninstantiated module is at the top level. This does not apply to libraries, which therefore have a
different status and a different procedure for analyzing them. A hierarchical name can be used to specify any
named object from anywhere in the instance hierarchy. The module hierarchy is often arbitrary and a lot of
effort is spent in maintaining port lists.

In Verilog, only net, reg, integer and time data types can be passed through module ports.

SystemVerilog adds many enhancements for representing design hierarchy:

— A global declaration space, visible to all modules at all levels of hierarchy

— Nested module declarations, to aid in representing self-contained models and libraries

— Relaxed rules on port declarations

— Simplified named port connections, using .name

— Implicit port connections, using .*

— Time unit and time precision specifications bound to modules

— A concept of interfaces to bundle connections between modules (presented in section 13)

An important enhancement in SystemVerilog is the ability to pass any data type through module ports, includ-
ing nets, and all variable types including reals, arrays, and structures.

12.2 The $root top level

In SystemVerilog there is a top level called $root, which is the whole source text. This allows declarations out-
side any named modules or interfaces, unlike Verilog.

SystemVerilog requires an elaboration phase. All modules and interfaces must be parsed before elaboration.
The order of elaboration shall be: First, look for explicit instantiations in $root. If none, then look for implicit
instantiations (i.e. uninstantiated modules). Next, traverse non-generate instantiations depth-first, in source
order. Finally, execute generate blocks depth-first, in source order.

The source text can include the declaration and use of modules and interfaces. Modules can include the decla-
ration and use of other modules and interfaces. Interfaces can include the declaration and use of other inter-
faces. A module or interface need not be declared before it is used in text order.

A module can be explicitly instantiated in the $root top-level. All uninstantiated modules become implicitly
instantiated within the top level, which is compatible with Verilog.

The following paragraphs compare the $root top level and modules.

The $root top level:

— has a single occurrence

— can be distributed across any number of files

— variable and net definitions are in a global name space and can be accessed throughout the hierarchy

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

52 Copyright 2002 Accellera. All rights reserved.

— task and function definitions are in a global name space and can be accessed throughout the hierarchy

— shall not contain initial or always procedures

— shall contain procedural statements, which will be executed one time, as if in an initial procedure

Modules:

— can have any number of module definitions

— can have any number of module instances, which create new levels of hierarchy

— can be distributed across any number of files, and can be defined in any order

— variable and net definitions are in the module instance name space and are local to that scope

— task and function definitions are in the module instance name space and are local to that scope

— can contain any number of initial and always procedures

— shall not contain procedural statements that are not within an initial procedure, always procedure,
task, or function

When an identifier is referenced within a scope, SystemVerilog follows the Verilog name search rules, and
then searches in the $root global name space. An identifier in the global name space can be explicitly selected
by pre-pending $root. to the identifier name. For example, a global variable named system_reset can be
explicitly referenced from any level of hierarchy using $root.system_reset.

The $root space can be used to model abstract functionality without modules. The following example illus-
trates using the $root space with just declarations, statements and functions.

typedef int myint;

function void main ();
myint i,j,k;
$display ("entering main...");
left (k);
right (i,j,k);
$display ("ending... i=%0d, j=%0d, k=%0d", i, j, k);

endfunction

function void left (output myint k);
k = 34;
$display ("entering left");

endfunction

function void right (output myint i, j, input myint k);
$display ("entering right");
i = k/2;
j = k+i;

endfunction

main();

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 53

12.3 Module declarations

Syntax 12-1—Module declaration syntax (excerpt from Annex A)

module_declaration ::= // from Annex A.1.3
{ attribute_instance } module_keyword module_identifier [parameter_port_list]
[list_of_ports] ; [unit] [precision] { module_item }
endmodule

| { attribute_instance } module_keyword module_identifier [parameter_port_list]
[list_of_port_declarations] ; [unit] [precision] { non_port_module_item }
endmodule

module_keyword ::= module | macromodule // from Annex A.1.3

timeunits_declaration ::= // from Annex A.1.3
timeunit time_literal ;

| timeprecision time_literal ;
| timeunit time_literal ;

timeprecision time_literal ;
| timeprecision time_literal ;

timeunit time_literal ;

module_or_generate_item_declaration ::= // from Annex A.1.5
net_declaration

| data_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration

module_item ::= // from Annex A.1.5
port_declaration ;

| non_port_module_item

non_port_module_item ::= // from Annex A.1.5
{ attribute_instance } generated_module_instantiation

| { attribute_instance } local_parameter_declaration
| { attribute_instance } module_or_generate_item
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration
| module_declaration

module_or_generate_item ::= // from Annex A.1.5
{ attribute_instance } parameter_override

| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_statement
| { attribute_instance } latch_statement
| { attribute_instance } ff_statement
| module_common_item

module_common_item ::= // from Annex A.1.5
{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } interface_instantiation

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

54 Copyright 2002 Accellera. All rights reserved.

In Verilog, a module must be declared apart from other modules, and can only be instantiated within another
module. A module declaration may appear after it is instantiated in the source text.

SystemVerilog adds the capability to nest module declarations, and to instantiate modules in the $root top-level
space, outside of other modules.

module m1(...); ... endmodule

module m2(...); ... endmodule

module m3(...);

m1 i1(...); // instantiates the local m1 declared below
m2 i4(...); // instantiates m2 - no local declaration
module m1(...); ... endmodule // nested module declaration,

// m1 module name is in m3’s name space
endmodule

m1 i2(...); // module instance in the $root space,
// instantiates the module m1 that is not nested in another module

12.4 Nested modules

A module can be declared within another module. The outer name space is visible to the inner module, so that
any name declared there can be used, unless hidden by a local name, provided the module is declared and
instantiated in the same scope.

One purpose of nesting modules is to show the logical partitioning of a module without using ports. Names
that are global are in the outermost scope, and names that are only used locally can be limited to local modules.

// This example shows a D-type flip-flop made of NAND gates
module dff_flat(input d, ck, pr, clr, output q, nq);
wire q1, nq1, q2, nq2;

 nand g1b (nq1, d, clr, q1);
 nand g1a (q1, ck, nq2, nq1);

 nand g2b (nq2, ck, clr, q2);
 nand g2a (q2, nq1, pr, nq2);

 nand g3a (q, nq2, clr, nq);
 nand g3b (nq, q1, pr, q);
endmodule

// This example shows how the flip-flop can be structured into 3 RS latches.
module dff_nested(input d, ck, pr, clr, output q, nq);
wire q1, nq1, nq2;

 module ff1;
 nand g1b (nq1, d, clr, q1);
 nand g1a (q1, ck, nq2, nq1);
 endmodule
 ff1 i1;

 module ff2;

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 55

 wire q2; // This wire can be encapsulated in ff2
 nand g2b (nq2, ck, clr, q2);
 nand g2a (q2, nq1, pr, nq2);
 endmodule
 ff2 i2;

 module ff3;
 nand g3a (q, nq2, clr, nq);
 nand g3b (nq, q1, pr, q);
 endmodule
 ff3 i3;
endmodule

The nested module declarations can also be used to create a library of modules that is local to part of a design.

module part1(....);
module and2(input a; input b; output z);
....
endmodule
module or2(input a; input b; output z);
....
endmodule
....
and2 u1(....), u2(....), u3(....);
.....

endmodule

This allows the same module name, e.g. and2, to occur in different parts of the design and represent different
modules. Note that an alternative way of handling this problem is to use configurations.

12.5 Port declarations

Syntax 12-2—Port declaration syntax (excerpt from Annex A)

inout_declaration ::= inout [port_type] list_of_port_identifiers // from Annex A.2.1.2

input_declaration ::= input [port_type] list_of_port_identifiers // from Annex A.2.1.2

output_declaration ::= // from Annex A.2.1.2
output [port_type] list_of_port_identifiers

| output data_type list_of_variable_port_identifiers

interface_port_declaration ::= // from Annex A.2.1.2
interface list_of_interface_identifiers

| interface . modport_identifier list_of_interface_identifiers
| identifier list_of_interface_identifiers
| identifier . modport_identifier list_of_interface_identifiers

port_type ::= // from Annex A.2.2.1
data_type { packed_dimension }

| net_type [signing] { packed_dimension }
| trireg [signing] { packed_dimension }
| event
| [signing] { packed_dimension } range

signing ::= [signed] | [unsigned] // from Annex A.2.2.1

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

56 Copyright 2002 Accellera. All rights reserved.

With SystemVerilog, a port can be a declaration of a net, an interface, an event, or a variable of any type,
including an array, a structure or a union.

typedef struct {
bit isfloat;
union { int i; shortreal f; } n;

} tagged; // named structure

module mh1 (input int in1, input shortreal in2, output tagged out);
...

endmodule

For the first port, if neither a type nor a direction is specified, then it shall be assumed to be a member of a port
list, and any port direction or type declarations must be declared after the port list. This is compatible with the
Verilog-1995 syntax. If the first port type but no direction is specified, then the port direction shall default to
inout. If the first port direction but no type is specified, then the port type shall default to wire. This default
type can be changed using the ‘default_nettype compiler directive, as in Verilog.

// Any declarations must follow the port list, because first port does not
// have either a direction or type specified; Port directions default to inout
module mh4(x, y);

int x;
char y;
...

endmodule

For subsequent ports in the port list, if the type and direction are omitted, then both are inherited from the pre-
vious port. If only the direction is omitted, then it is inherited from the previous port. If only the type is omit-
ted, it shall default to wire. This default type can be changed using the ‘default_nettype compiler
directive, as in Verilog.

// second port inherits its direction and type from previous port
module mh3 (input char a, b);

...
endmodule

A software tool can use the port direction to check against writing to an input port or not writing to an output
port.

Ports which are of a net type can have multiple drivers, which are resolved according to the net’s resolution
function. A driver can be an output port of an instantiation, or a continuous assignment.

If the port is of type logic or any other variable data type, then the port has the value of the last assignment to
it. If the port is an inout, then these assignments can be inside or outside the module. If the port is an output,
then these assignments shall only be inside the module. This provides a way to model a port which is meant to
be a single driver.

12.6 Time unit and precision

The time unit can be set by the timeunit keyword to a time which must be a power of 10 units. For example:

timeunit 100ps;

The time unit is determined as follows:

1) If a timeunit has been specified in the current module, then the time unit is set to module’s time units.

2) Else, if the module definition is nested, then the time unit is inherited from the enclosing module.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 57

3) Else, if a ‘timescale directive has been specified, then the time unit is set to the units of last ‘timescale
directive.

4) Else, if the $root top level has a time unit, then the time unit set to the time units of the root module.

5) Else, the simulator’s default time units are used.

The simulator’s default time units follow the rules of Verilog.

The time precision is set by the timeprecision keyword to a time which must be a power of 10 units e.g.

timeprecision 100fs;

If the timeprecision is not specified, then the precision is determined following the same precedence as
with time units.

It is an error to set a precision larger than the current unit.

The timeunit and timeprecision keywords shall precede any other item in the top level, module, or inter-
face, because the other items can contain delays and therefore can be dependent on the time unit.

12.7 Module instances

Syntax 12-3—Module instance syntax (excerpt from Annex A)

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module name can be a module previously declared or one

module_instantiation ::= // from Annex A.4.1.1
module_identifier [parameter_value_assignment] module_instance { , module_instance } ;

parameter_value_assignment ::= # (list_of_parameter_assignments)

list_of_parameter_assignments ::=
ordered_parameter_assignment { , ordered_parameter_assignment }

| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression | data_type

named_parameter_assignment ::=
. parameter_identifier ([expression])

| . parameter_identifier ([data_type])

module_instance ::= name_of_instance ([list_of_port_connections])

name_of_instance ::= module_instance_identifier { range }

list_of_port_connections ::=
ordered_port_connection { , ordered_port_connection }

| dot_named_port_connection { , dot_named_port_connection }
| { named_port_connection , } dot_star_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [expression]

named_port_connection ::= { attribute_instance } .port_identifier ([expression])

dot_named_port_connection ::=
{ attribute_instance } .port_identifier

| named_port_connection

dot_star_port_connection ::= { attribute_instance } .*

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

58 Copyright 2002 Accellera. All rights reserved.

declared later. Actual parameters can be named or ordered. Port connections can be named, ordered or implic-
itly connected. They can be nets, variables, or other kinds of interfaces, events, or expressions. See below for
the connection rules.

Consider an ALU accumulator (alu_accum) example module that includes instantiations of an ALU mod-
ule, an accumulator register (accum) module and a sign-extension (xtend) module. The module headers for
the three instantiated modules are shown in the following example code.

module alu (
output reg [7:0] alu_out,
output reg zero,
input [7:0] ain, bin,
input [2:0] opcode);
// RTL code for the alu module

endmodule

module accum (
output reg [7:0] dataout,
input [7:0] datain,
input clk, rst_n);
// RTL code for the accumulator module

endmodule

module xtend (
output reg [7:0] dout,
input din,
input clk, rst_n);
// RTL code for the sign-extension module

endmodule

12.7.1 Instantiation using positional port connections

Verilog has always permitted instantiation of modules using positional port connections, as shown in the
alu_accum1 module example, below.

module alu_accum1 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);
wire [7:0] alu_out;

alu alu (alu_out, , ain, bin, opcode);
accum accum (dataout[7:0], alu_out, clk, rst_n);
xtend xtend (dataout[15:8], alu_out[7], clk, rst_n);

endmodule

As long as the connecting variables are ordered correctly and are the same size as the instance-ports that they
are connected to, there will be no warnings and the simulation will work as expected.

12.7.2 Instantiation using named port connections

Verilog has always permitted instantiation of modules using named port connections as shown in the
alu_accum2 module example.

module alu_accum2 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 59

input clk, rst_n);
wire [7:0] alu_out;

alu alu (.alu_out(alu_out), .zero(),
 .ain(ain), .bin(bin), .opcode(opcode));

accum accum (.dataout(dataout[7:0]), .datain(alu_out),
 .clk(clk), .rst_n(rst_n));

xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]),
 .clk(clk), .rst_n(rst_n));

endmodule

Named port connections do not have to be ordered the same as the ports of the instantiated module. The vari-
ables connected to the instance ports must be the same size or a port-size mismatch warning will be reported.

12.7.3 Instantiation using implicit .name port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .name syntax if the instance-port name
and size match the connecting variable-port name and size. This enhancement eliminates the requirement to
list a port name twice when the port name and signal name are the same, while still listing all of the ports of the
instantiated module for documentation purposes.

In the following alu_accum3 example, all of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. Implicit .name port connections are made for all name and size
matching connections on the instantiated module.

In the same alu_accum3 example, the accum module has an 8-bit port called dataout that is connected
to a 16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the port
must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The datain
port on the accum is connected to a bus by a different name (alu_out), so this port is also connected by
name. The clk and rst_n ports are connected using implicit .name port connections. Also in the same
alu_accum3 example, the xtend module has an 8-bit output port called dout and a 1- bit input port called
din. Since neither of these port names match the names (or sizes) of the connecting variables, both are con-
nected by name. The clk and rst_n ports are connected using implicit .name port connections.

module alu_accum3 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);
wire [7:0] alu_out;

alu alu (.alu_out, .zero(), .ain, .bin, .opcode);
accum accum (.dataout(dataout[7:0]), .datain(alu_out), .clk, .rst_n);
xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]), .clk, .rst_n);

endmodule

Implicit .name port connections do not have to be ordered the same as the ports of the instantiated module.

The following rules apply to implicit .name port connections:

— For an implicit .name port connection to be legal, the connecting variable name must match the port name
of the instantiated module.

— For an implicit .name port connection to be legal, the connecting variable size must match the port size of
the instantiated module.

— For an implicit .name port connection to be legal, the connecting variable data type must be compatible to
the port data type of the instantiated module. See section 12.7.5 for a description of compatible data types
for implicit port connections.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

60 Copyright 2002 Accellera. All rights reserved.

— Implicit .name port connections cannot be used in the same instantiation with positional port connections.

— Implicit .name port connections may be used in the same instantiation with named port connections.

— Implicit .name port connections cannot be used in the same instantiation with implicit .* port connections.

— The order of the implicit .name port connections does not have to match the port-order of the instantiated
module.

— All connecting variables must be explicitly declared, either as a port in the parent module (following the
rules of Verilog-2001) or as an explicit net or variable of one or more bits.

12.7.4 Instantiation using implicit .* port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .* syntax for all ports where the
instance-port name and size match the connecting variable-port name and size. This enhancement eliminates
the requirement to list any port where the name and size of the connecting variable match the name and size of
the instance port. This implicit port connection style is used to indicate that all port names and sizes match the
connections where emphasis is placed only on the exception ports. The implicit .* port connection syntax can
greatly facilitate rapid block-level testbench generation where all of the testbench variables are chosen to
match the instantiated module port names and sizes.

In the following alu_accum4 example, all of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. The implicit .* port connection syntax connects all other ports
on the instantiated module.

In the same alu_accum4 example, the accum module has an 8-bit port called dataout that is connected
to a 16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the port
must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The datain
port on the accum is connected to a bus by a different name (alu_out), so this port is also connected by
name. The clk and rst_n ports are connected using implicit .* port connections. Also in the same
alu_accum4 example, the xtend module has an 8-bit output port called dout and a 1- bit input port called
din. Since neither of these port names match the names (or sizes) of the connecting variables, both are con-
nected by name. The clk and rst_n ports are connected using implicit .* port connections.

module alu_accum4 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);
wire [7:0] alu_out;

alu alu (.*, .zero());
accum accum (.*, .dataout(dataout[7:0]), .datain(alu_out));
xtend xtend (.*, .dout(dataout[15:8]), .din(alu_out[7]));

endmodule

The following rules apply to implicit .* port connections:

— For an implicit .* port connection to be legal, all implicitly connected ports must have a connecting vari-
able name to match the port name of the instantiated module.

— For an implicit .* port connection to be legal, all implicitly connected ports must have a connecting vari-
able size to match the port size of the instantiated module.

— For an implicit .* port connection to be legal, the connecting variable data type must be compatible to the
port data type of the instantiated module. See section 12.7.5 for a description of compatible data types for
implicit port connections.

— Implicit .* port connections cannot be used in the same instantiation with positional port connections.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 61

— Implicit .* port connections may be used in the same instantiation with named port connections.

— Implicit .* port connections cannot be used in the same instantiation with implicit .name port connections.

— If implicit .* port connections are used in an instantiation, all unconnected ports must be shown using
named port connections.

— When the implicit .* port connection is mixed in the same instantiation with named port connections, the
implicit .* port connection token can be placed anywhere in the port list.

— All connecting variables must be explicitly declared, either as a port in the parent module (following the
rules of Verilog-2001) or as an explicit net or variable of one or more bits.

Modules may be instantiated into the same parent module using any combination of legal positional, named,
implicit .name connected and implicit .* connected instances as shown in alu_accum5 example.

module alu_accum5 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);
wire [7:0] alu_out;

// mixture of named port connections and
// implicit .name port connections
alu alu (.ain(ain), .bin(bin), .alu_out, .zero(), .opcode);

// positional port connections
accum accum (dataout[7:0], alu_out, clk, rst_n);

// mixture of named port connections and implicit .* port connections
xtend xtend (.dout(dataout[15:8]), .*, .din(alu_out[7]));

endmodule

12.7.5 Compatible data types for implicit port connections

Implicit port connections are permitted between any two data types that are allowed by SystemVerilog port
connection rules, as long as the SystemVerilog simulator is not required to report a warning about the connec-
tion. Any SystemVerilog instantiation that would cause a warning to be issued must be connected by name if
other ports of the instance are instantiated using an implicit port connection style.

If, for example, a top-level module connects a signal named net1 of any data type to an instantiated submod-
ule with a port also named net1 of same data type, SystemVerilog will run this simulation without warning,
because the data types are the same across ports. It is legal to make this type of connection using an implicit
port connection style.

If, for example, a top-level module connects a signal named net2 of type wire to an instantiated submodule
with a port also named net2 of type reg, Verilog simulators run this simulation without warning, because the
data types are compatible across ports. It is legal to make this type of connection using an implicit port connec-
tion style.

If, for example, a top-level module connects a signal named net3 of type tri1 to an instantiated submodule
with a port named net3 of type tri0, Verilog simulators issue a warning and the top-level data type (tri1) is
used during simulation, as described in the IEEE Verilog-2001 Standard. It is legal to make this type of con-
nection using named port connections but it shall be a syntax error to make this connection using an implicit
port connection style. Any port connection that results in a required warning message shall not be permitted to
be instantiated using an implicit port connection style.

A top-level module shall not implicitly connect a signal of any data type to a port by the same name of another
data type if connecting the data types is illegal as defined by this SystemVerilog standard.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

62 Copyright 2002 Accellera. All rights reserved.

12.8 Port connection rules

If a port declaration has a variable data type such as logic, then its direction controls how it can be connected,
as follows:

— An input can be connected to any expression of a compatible data type. If unconnected, it has the initial
value corresponding to the data type.

— An output can be connected to a variable (or a concatenation) of a compatible data type, and has shared
variable behavior if multiple outputs are connected (last write wins); An output logic can be connected
to a net (to provide a resolution function in the case of multiple drivers).

— An inout can be connected to a variable (or a concatenation) of the same data type.

If a port declaration has a wire type (which is the default), or any other net type, then its direction controls
how it can be connected as follows:

— An input can be connected to any expression of a compatible data type. If unconnected, it has the value
’z.

— An output can be connected to a net type (or a concatenation of net types) or left unconnected, but not to
a logic variable.

— An inout can be connected to a net type (or a concatenation of net types) or left unconnected, but not to a
logic variable.

Note that where the data types differ between the port declaration and connection, an initial value change event
may be caused at time zero.

If a port declaration has a generic interface type, then it can be connected to an interface of any type. If a
port declaration has a named interface type, then it must be connected to a generic interface or an interface of
the same type.

A mismatch between vector width across a port connection is resolved as follows:

— If the port is a net vector, then the Verilog connection rules for nets are followed.

— If the port is an inout port variable, then a port connection must have the same size and representation on
both sides of the port. It shall be an error if there is a mismatch.

— If the port is an input or an output variable, then the Verilog assignment rules are followed.

For an unpacked array port, the port and the array connected to the port must have the same number of
unpacked dimensions, and each dimension of the port must have the same size as the corresponding dimension
of the array being connected.

If the size and type of the port connection match the size and type of a single instance port, the connection shall
be made to each instance in the array.

If the port connection is an unpacked array, the unpacked array dimensions of each port connection shall be
compared with the dimensions of the instance array. If they match exactly in size, each element of the port con-
nection shall be matched to the port left index to left index, right index to right index. If they do not match it
shall be considered an error.

If the port connection is a packed array, each instance shall get a part-select of the port connection, starting
with all right-hand indices to match the right most part-select, and iterating through the right most dimension
first. Too many or too few bits to connect all the instances shall be considered an error.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 63

12.9 Name spaces

There is one name space hierarchy in SystemVerilog. A type name may be not be the same as an instance
name. Type names include modules, interfaces, and data types. Instance names include tasks, functions, proce-
dures, variables, constants and labels as well as module and interface instances.

Pre-defined (built-in) names begin with $. For example $root is the name of the top level of the hierarchy.

Names are initially global. A new scope is defined by:

— a module or interface

— a task or function

— a sequential or parallel block

— a structure or union

Tasks and function definitions cannot be nested within themselves, but can be defined in modules or interfaces.
The declaration in the closest enclosing scope is matched.

12.10 Hierarchical names

Hierarchical names are also called nested identifiers. They consist of instance names separated by periods,
where an instance name may be an array element.

$root.mymodule.u1 // absolute name
u1.struct1.field1 // u1 must be visible locally or above, including globally
adder1[5].sum

Nested identifiers can be read (in expressions), written (in assignments or task/function calls) or triggered off
(in event expressions). They can also be used as type, task or function names.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

64 Copyright 2002 Accellera. All rights reserved.

Section 13
Interfaces

13.1 Introduction (informative)

The communication between blocks of a digital system is a critical area that can affect everything from ease of
RTL coding, to hardware-software partitioning to performance analysis to bus implementation choices and
protocol checking. The interface construct in SystemVerilog was created specifically to encapsulate the com-
munication between blocks, allowing a smooth migration from abstract system-level design through succes-
sive refinement down to lower-level register-transfer and structural views of the design. By encapsulating the
communication between blocks, the interface construct also facilitates design re-use. The inclusion of interface
capabilities is one of the major advantages of SystemVerilog.

At its lowest level, an interface is a named bundle of nets or variables. The interface is instantiated in a design
and can be passed through a port as a single item, and the component nets or variables referenced where
needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which
are just repetitions of names. The ability to replace a group of names by a single name can significantly reduce
the size of a description and improve its maintainability.

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity,
making an interface, at its highest level, more like a class template. An interface can have parameters, con-
stants, variables, functions and tasks. The types of elements in an interface can be declared, or the types can be
passed in as parameters. The member variables and functions are referenced relative to the instance name of
the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/
function members of that interface to drive the communication. With the functionality thus encapsulated in the
interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol
can be easily changed by replacing the interface with a different interface containing the same members but
implemented at a different level of abstraction. The modules connected via the interface don’t need to change
at all.

To provide direction information for module ports and to control the use of tasks and functions within particu-
lar modules, the modport construct is provided. As the name indicates, the directions are those seen from the
module.

In addition to task/function methods, an interface can also contain processes (i.e. initial or always blocks)
and continuous assignments, which are useful for system-level modelling and test bench applications. This
allows the interface to include, for example, its own protocol checker that automatically verifies that all mod-
ules connected via the interface conform to the specified protocol. Other applications, such as functional cov-
erage recording and reporting, protocol checking and assertions can also be built into the interface.

The methods can be abstract, i.e. defined in one module and called in another, using the export and import con-
structs. This could be coded using hierarchical path names, but this would impede re-use because the names
would be design-specific. A better way is to declare the task and function names in the interface, and to use
local hierarchical names from the interface instance for both definition and call. Broadcast communication is
modeled by forkjoin tasks, which can be defined in more than one module and executed concurrently.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 65

13.2 Interface syntax

Syntax 13-1—Interface syntax (excerpt from Annex A)

The interface construct provides a new hierarchical structure. It can contain smaller interfaces and can be
passed through ports.

The aim of interfaces is to encapsulate communication. At the lower level, this means bundling variables and

modport_declaration ::= modport list_of_modport_identifiers ; // from Annex A.2.9

list_of_modport_identifiers ::= modport_item { , modport_item }

modport_item ::= modport_identifier (modport_port { , modport_port })

modport_port ::= // from Annex A.2.9
input [port_type] port_identifier

| output [port_type] port_identifier
| inout [port_type] port_identifier
| interface_identifier . port_identifier
| import_export task named_task_proto
| import_export function named_fn_proto
| import_export task_or_function_identifier { , task_or_function_identifier }

import_export ::= import | export

interface_port_declaration ::= // from Annex A.2.1.2
interface list_of_interface_identifiers

| interface . modport_identifier list_of_interface_identifiers
| identifier list_of_interface_identifiers
| identifier . modport_identifier list_of_interface_identifiers

interface_or_generate_item ::= // from Annex A.1.6
{ attribute_instance } continuous_assign

| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_statement
| { attribute_instance } latch_statement
| { attribute_instance } ff_statement
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| module_common_item
| { attribute_instance } modport_declaration

interface_item ::= // from Annex A.1.6
port_declaration

| non_port_interface_item

non_port_interface_item ::= // from Annex A.1.6
{ attribute_instance } generated_interface_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specparam_declaration
| interface_or_generate_item
| interface_declaration

interface_instantiation ::= // from Annex A.4.1.2
interface_identifier [parameter_value_assignment] module_instance { , module_instance } ;

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

66 Copyright 2002 Accellera. All rights reserved.

wires in interfaces, and bundling ports with directions in modports. The modules can be made generic so that
the interfaces can be changed. The following examples show these features. At a higher level of abstraction,
communication can be done by tasks and functions. Interfaces can include task and function definitions, or just
task and function prototypes with the definition in one module (server/slave) and the call in another (client/
master).

An interface is declared as follows:

interface <identifier>; <interface_items> endinterface [: <name> <identifier>]

An interface can be instantiated hierarchically like a module with or without ports. For example:

myinterface #(100) scalar1, vector[9:0];

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be
declared nor instantiated in interfaces.

The simplest use of an interface is to bundle wires, as is illustrated in the examples below.

13.2.1 Example without using interfaces

This example shows a simple bus implemented without interfaces. Note that the logic type can replace wire
and reg if no resolution of multiple drivers is needed.

module memMod(input bit req,
bit clk,
bit start,
logic[1:0] mode,
logic[7:0] addr,

inout logic[7:0] data,
output bit gnt,

bit rdy);
logic avail;

...
endmodule

module cpuMod(
input bit clk,

bit gnt,
bit rdy,

inout logic [7:0] data,
output bit req,

bit start,
logic[7:0] addr,
logic[1:0] mode);

...
endmodule

module top;
logic req, gnt, start, rdy; // req is logic not bit here
logic clk = 0;
logic [1:0] mode;
logic [7:0] addr, data;

memMod mem(req, clk, start, mode, addr, data, gnt, rdy);
cpuMod cpu(clk, gnt, rdy, data, req, start, addr, mode);

endmodule

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 67

13.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets. When an interface
is used as a port, the variables and nets in it are assumed to be inout ports. The following interface example
shows the basic syntax for defining, instantiating and connecting an interface. Usage of the SystemVerilog
interface capability can significantly reduce the amount of code required to model port connections.

interface simple_bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface: simple_bus

module memMod(simple_bus a, // Use the simple_bus interface
 input bit clk);

logic avail;
// a.req is the req signal in the ’simple_bus’ interface
always @(posedge clk) a.gnt <= a.req & avail;

endmodule

module cpuMod(simple_bus b, input bit clk);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf; // Instantiate the interface

memMod mem(sb_intf, clk); // Connect the interface to the module instance
cpuMod cpu(.b(sb_intf), .clk(clk)); // Either by position or by name

endmodule

In the preceding example, if the same identifier, sb_intf, had been used to name the simple_bus interface in the
memMod and cpuMod module headers, then implicit port declarations also could have been used to instantiate
the memMod and cpuMod modules into the top module, as shown below.

module memMod (simple_bus sb_intf, input bit clk);
...

endmodule

module cpuMod (simple_bus sb_intf, input bit clk);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf;

memMod mem (.*); // implicit port connections
cpuMod cpu (.*); // implicit port connections

endmodule

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

68 Copyright 2002 Accellera. All rights reserved.

13.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface instantiation as a place-holder for an interface to
be selected when the module itself is instantiated. The unspecified interface is referred to as a “generic” inter-
face port. The following interface example shows how to specify a generic interface port in a module defini-
tion.

// memMod and cpuMod can use any interface
module memMod (interface a, input bit clk);

...
endmodule

module cpuMod(interface b, input bit clk);
...

endmodule

interface simple_bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface: simple_bus

module top;
logic clk = 0;

simple_bus sb_intf; // Instantiate the interface

// Connect the sb_intf instance of the simple_bus
// interface to the generic interfaces of the
// memMod and cpuMod modules
memMod mem (.a(sb_intf), .clk(clk));
cpuMod cpu (.b(sb_intf), .clk(clk));

endmodule

An implicit port cannot be used to connect to a generic interface. A named port must be used to connect to a
generic interface, as shown below.

module memMod (interface a, input bit clk);
...

endmodule

module cpuMod (interface b, input bit clk);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf;

memMod mem (.*, .a(sb_intf)); // partial implicit port connections
cpuMod cpu (.*, .b(sb_intf)); // partial implicit port connections

endmodule

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 69

13.3 Ports in interfaces

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to
connect to a port with the same nets and variables. To share an external net or variable, one that makes a con-
nection from outside of the interface as well as forming a common connection to all module ports that instanti-
ate the interface, an interface port declaration is required. The difference between nets or variables in the
interface port list and other nets or variables within the interface is that only those in the port list can be con-
nected externally by name or position when the interface is instantiated.

interface i1 (input a, output b, inout c);
wire d;

endinterface

The wires a, b and c can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between
two instances of the interface.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface: simple_bus

module memMod(simple_bus a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // a.req is in the ’simple_bus’ interface

endmodule

module cpuMod(simple_bus b);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf1(clk); // Instantiate the interface
simple_bus sb_intf2(clk); // Instantiate the interface

memMod mem1(.a(sb_intf1)); // Connect bus 1 to memory 1
cpuMod cpu1(.b(sb_intf1));
memMod mem2(.a(sb_intf2)); // Connect bus 2 to memory 2
cpuMod cpu2(.b(sb_intf2));

endmodule

Note: Because the instantiated interface names do not match the interface names used in the memMod and
cpuMod modules, implicit port connections cannot be used for this example.

13.4 Modports

To bundle module ports, there are modport lists with directions declared within the interface. The keyword
modport indicates that the directions are declared as if inside the module.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

70 Copyright 2002 Accellera. All rights reserved.

interface i2;
wire a, b, c, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);

endinterface

The modport list name (master or slave) can be specified in the module header, where the modport name acts
as a direction and the interface name as a type.

module m (i2.master i);
...

endmodule

module s (i2.slave i);
...

endmodule

module top;
i2 i;

m u1(.i(i));
s u2(.i(i));

endmodule

The modport list name (master or slave) can also be specified in the port connection with the module instance,
where the modport name is hierarchical from the interface instance.

module m (i2 i);
...

endmodule

module s (i2 i);
...

endmodule

module top;
i2 i;

m u1(.i(i.master));
s u2(.i(i.master));

endmodule

The syntax of interface_name.modport_name instance_name is really a hierarchical type fol-
lowed by an instance. Note that this can be generalized to any interface with a given modport name by writing
interface.modport_name instance_name.

In a hierarchical interface, the directions in a modport declaration can themselves be modport plus name.

interface i1;
interface i3;

wire a, b, c, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);

endinterface
i3 ch1, ch2;
modport master2 (ch1.master, ch2.master);

endinterface

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 71

Note that if no modport is specified in the module header or in the port connection, then all the wires and vari-
ables in the interface are accessible with direction inout, as in the examples above.

13.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions as in port declarations. It uses
the modport name in the module definition.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data);

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data);

endinterface: simple_bus

module memMod (simple_bus.slave a); // interface name and modport name
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule

module cpuMod (simple_bus.master b);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 clk++;

memMod mem(.a(sb_intf)); // Connect the interface to the module instance
cpuMod cpu(.b(sb_intf));

endmodule

13.4.2 An example of connecting a port bundle

This interface example shows how to use modports to control signal directions. It uses the modport name in
the module instantiation.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

72 Copyright 2002 Accellera. All rights reserved.

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data);

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data);

endinterface: simple_bus

module memMod(simple_bus a); // Uses just the interface name
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule

module cpuMod(simple_bus b);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 clk++;

memMod mem(sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master);

endmodule

13.4.3 An example of connecting a port bundle to a generic interface

This interface example shows how to use modports to control signal directions. It shows the use of the inter-
face keyword in the module definition. The actual interface and modport are specified in the module instantia-
tion.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data);

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data);

endinterface: simple_bus

module memMod(interface a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 73

a.gnt <= a.req & avail; // the gnt and req signal in the interface
endmodule

module cpuMod(interface b);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master);

endmodule

13.5 Tasks and functions in interfaces

Tasks and functions may be defined within an interface, or they may be defined within one or more of the mod-
ules connected. This allows a more abstract level of modeling. For example “read” and “write” can be defined
as tasks, without reference to any wires, and the master module can merely call these tasks. In a modport
these tasks are declared as import tasks.

If the tasks or functions are defined in a module, using a hierarchical name, they must also be declared as
extern in the interface, or as export in a modport.

Tasks (not functions) may be defined in a module that is instantiated twice, e.g. two memories driven from the
same CPU. Such multiple task definitions are allowed by a forkjoin extern declaration in the interface.

13.5.1 An example of using tasks in an interface

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

task masterRead(input logic[7:0] raddr); // masterRead method
// ...

endtask: masterRead

task slaveRead; // slaveRead method
// ...

endtask: slaveRead

endinterface: simple_bus

module memMod(interface a); // Uses any interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail // the gnt and req signals in the interface

always @(a.start)
a.slaveRead;

endmodule

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

74 Copyright 2002 Accellera. All rights reserved.

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.masterRead(raddr); // call the Interface method
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task

endmodule

A function prototype specifies the types and directions of the arguments and the return value of a function
which is defined elsewhere. Similarly, a task prototype specifies the types and directions of the arguments of a
task which is defined elsewhere. In a modport, the import and export constructs can either use task or function
prototypes or use just the identifiers.

13.5.2 An example of using tasks in modports

This interface example shows how to use modports to control signal directions and task access in a full read/
write interface.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
import task slaveRead(),

 task slaveWrite());
// import into module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task masterRead(input logic[7:0] raddr),

 task masterWrite(input logic[7:0] waddr));
// import requires the full task prototype

task masterRead(input logic[7:0] raddr); // masterRead method
// ...

endtask

task slaveRead; // slaveRead method
// ...

endtask

task masterWrite(input logic[7:0] waddr);
//...

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 75

endtask

task slaveWrite;
//...

endtask

endinterface: simple_bus

module memMod(interface a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
b.gnt <= b.req & avail; // the gnt and req signals in the interface

always @(a.start)
if (a.mode[0] == 1’b0)

a.slaveRead;
else

a.slaveWrite;
endmodule

module cpuMod(interface b);
enum {read, write} instr = $rand();
logic [7:0] raddr = $rand();

always @(posedge b.clk)
if (instr == read)

b.masterRead(raddr); // call the Interface method
// ...
else

b.masterWrite(raddr);
endmodule

module omniMod(interface b);
//...

endmodule: omniMod

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task
omniMod omni(sb_intf); // has access to all master and slave tasks

endmodule

13.5.3 An example of exporting tasks and functions

This interface example shows how to define tasks in one module and call them in another, using modports to
control task access.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

76 Copyright 2002 Accellera. All rights reserved.

modport slave(input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
export task Read(),

 task Write());
 // export from module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task Read(input logic[7:0] raddr),

 task Write(input logic[7:0] waddr));
 // import requires the full task prototype

endinterface: simple_bus

module memMod(interface a); // Uses just the interface keyword
logic avail;

task a.Read; // Read method
avail = 0;
...
avail = 1;

endtask

task a.Write;
avail = 0;
...
avail = 1;

endtask
endmodule

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.Read(raddr); // call the slave method via the interface
...

else
b.Write(raddr);

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // exports the Read and Write tasks
cpuMod cpu(sb_intf.master); // imports the Read and Write tasks

endmodule

13.5.4 An example of multiple task exports

It is normally an error for more than one module to export the same task name. However, several instances of
the same modport type may be connected to an interface, such as memory modules in the previous example.
So that these can still export their read and write tasks, the tasks must be declared in the interface using the

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 77

extern forkjoin keywords. Normally, only one module responds to the task call, e.g. the one containing the
appropriate address. Only then should the task write to the result variables. Note multiple export of functions is
not allowed, because they must always write to the result.

This interface example shows how to define tasks in more than one module and call them in another using
extern forkjoin. The multiple task export mechanism can also be used to count the instances of a particular
modport that are connected to each interface instance.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
int slaves;
// tasks executed concurrently as a fork/join block
extern forkjoin task countSlaves();
extern forkjoin task Read(input logic[7:0] raddr);
extern forkjoin task Write(input logic[7:0] waddr);

modport slave(input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
export task Read(),

 task Write());
// export from module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task Read(input logic[7:0] raddr),

 task Write(input logic[7:0] waddr));
// import requires the full task prototype

initial begin
slaves = 0;
countSlaves;
$display ("number of slaves = %d", slaves);

end

endinterface: simple_bus

module memMod(interface a); // Uses just the interface keyword
logic avail;

task a.countSlaves;
a.slaves++;

endtask

task a.Read; // Read method
avail = 0;
...
avail = 1;

endtask

task a.Write;
avail = 0;
...
avail = 1;

endtask

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

78 Copyright 2002 Accellera. All rights reserved.

endmodule

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.Read(raddr); // call the slave method via the interface
// ...

else
b.Write(raddr);

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem1(sb_intf.slave); //exports the countSlaves, Read and Write tasks
memMod mem2(sb_intf.slave); //exports the countSlaves, Read and Write tasks
cpuMod cpu(sb_intf.master); //imports the Read and Write tasks

endmodule

13.6 Parameterized interfaces

Interface definitions can take advantage of parameters and parameter redefinition, in the same manner as mod-
ule definitions. This example shows how to use parameters in interface definitions.

interface simple_bus #(parameter AWIDTH = 8, DWIDTH = 8;)
 (input bit clk); // Define the interface

logic req, gnt;
logic [AWIDTH-1:0] addr;
logic [DWIDTH-1:0] data;
logic [1:0] mode;
logic start, rdy;

modport slave(input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
import task slaveRead(),

 task slaveWrite());
// import into module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task masterRead(input logic[AWIDTH-1:0] raddr),

 task masterWrite(input logic[AWIDTH-1:0] waddr));
// import requires the full task prototype

task masterRead(input logic[AWIDTH-1:0] raddr); // masterRead method
...

endtask

task slaveRead; // slaveRead method
...

endtask

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 79

task masterWrite(input logic[AWIDTH-1:0] waddr);
...

endtask

task slaveWrite;
...

endtask

endinterface: simple_bus

module memMod(interface a); // Uses just the interface keyword
logic avail;

always @(posedge b.clk) // the clk signal from the interface
a.gnt <= a.req & avail; //the gnt and req signals in the interface

always @(b.start)
if (a.mode[0] == 1’b0)

a.slaveRead;
else

a.slaveWrite;
endmodule

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.masterRead(raddr); // call the Interface method
// ...

else
b.masterWrite(raddr);

endmodule

module top;

logic clk = 0;

simple_bus sb_intf(clk); // Instantiate default interface
simple_bus #(.DWIDTH(16)) wide_intf(clk); // Interface with 16-bit data

initial repeat(10) #10 clk++;

memMod mem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task

memMod memW(wide_intf.slave); // 16-bit wide memory
cpuMod cpuW(wide_intf.master); // 16-bit wide cpu

endmodule

13.7 Access without Ports

In addition to interfaces being used to connect two or more modules, the interface object/method paradigm
allows for interfaces to be instantiated directly as static data objects within a module. If the methods are used
to access internal state information about the interface, then these methods may be called from different points
in the design to share information.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

80 Copyright 2002 Accellera. All rights reserved.

interface intf_mutex;

task lock ();
...

endtask

function unlock();
...

endfunction
endinterface

function int f(input int i);
return(i); // just returns arg

endfunction

function int g(input int i);
return(i); // just returns arg

endfunction

module mod1(input int in, output int out);

intf_mutex mutex;

always begin
#10 mutex.lock();
@(in) out = f(in);
mutex.unlock;

end

always begin
#10 mutex.lock();
@(in) out = g(in);
mutex.unlock;

end
endmodule

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 81

Section 14
Parameters

14.1 Introduction (informative)

Verilog-2001 provides three constructs for defining compile time constants: the parameter, localparam and
specparam statements.

The language provides four methods for setting the value of parameter constants in a design. Each parameter
must be assigned a default value when declared. The default value of a parameter of an instantiated module can
be overridden in each instance of the module using one of the following:

— Implicit in-line parameter redefinition (e.g. foo #(value, value) u1 (...);)

— Explicit in-line parameter redefinition (e.g. foo #(.name(value), .name(value)) u1
(...);)

— defparam statements, using hierarchical path names to redefine each parameter

14.1.1 Defparam removal

The defparam statement may be removed from future versions of the language. See section 18.2.

14.2 Parameter declaration syntax

Syntax 14-1—Parameter declaration syntax (excerpt from Annex A)

A module or an interface can have parameters, which are set during elaboration and are constant during simu-
lation. They are defined with data types and default values. With SystemVerilog, if no data type is supplied,
parameters default to type logic of arbitrary size for Verilog-2001 compatibility and interoperability.

SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to

local_parameter_declaration ::= // from Annex A.2.1.1
localparam [signing] { packed_dimension } [range] list_of_param_assignments ;

| localparam data_type list_of_param_assignments ;

parameter_declaration ::=
parameter [signing] { packed_dimension } [range] list_of_param_assignments

| parameter data_type list_of_param_assignments
| parameter type list_of_type_assignments

specparam_declaration ::=
specparam [range] list_of_specparam_assignments ;

list_of_param_assignments ::= param_assignment { , param_assignment } // from Annex A.2.3

list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }

list_of_type_assignments ::= type_assignment { , type_assignment }

param_assignment ::= parameter_identifier = constant_param_expression // from Annex A.2.4

specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression

| pulse_control_specparam

type_assignment ::= type_identifier = data_type

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

82 Copyright 2002 Accellera. All rights reserved.

have data whose type is set for each instance.

module ma #(parameter p1 = 1; parameter type p2 = shortint;)
(input logic [p1:0] i, output logic [p1:0] o);

p2 j = 0; // type of j is set by a parameter, which is shortint unless
redefined

always @(i) begin
o = i;
j++;

end
endmodule

module mb;
logic [3:0] i,o;
ma #(.p1(3), .p2(int)) u1(i,o); //redefines p2 to a type of int

endmodule

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 83

Section 15
Configuration libraries

15.1 Introduction (informative)

Verilog-2001 provides the ability to specify design configurations, which specify the binding information of
module instances to specific Verilog HDL source code. Configurations utilize libraries. A library is a collec-
tion of modules, primitives and other configurations. Separate library map files specify the source code loca-
tion for the cells contained within the libraries. The names of the library map files is typically specified as
invocation options to simulators or other software tools reading in Verilog source code.

SystemVerilog adds support for interfaces to Verilog configurations. SystemVerilog also provides an alternate
method for specifying the names of library map files.

15.2 Libraries

A library is a named collection of cells. A cell is a module, macromodule, primitive, interface, or configura-
tion. A configuration is a specification of which source files bind to each instance in the design.

15.3 Library map files

Verilog 2001 specifies that library declarations, include statements, and config declarations are normally in a
mapping file that is read first by a simulator or other software tool. SystemVerilog does not require a special
library map file. Instead, the mapping information can be specified in the $root top level.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

84 Copyright 2002 Accellera. All rights reserved.

Section 16
System tasks and system functions

16.1 Introduction (informative)

SystemVerilog adds several system tasks and system functions.

16.2 Expression size system function

Syntax 16-1—Size function syntax (not in Annex A)

The $bits system function returns the number of bits required to hold a value. A 4 state value counts as one
bit. Given the declaration:

logic [31:0] foo;

Then $bits(foo) will return 32, even if a software tool uses more than 32-bits of storage to represent the 4-
state values.

16.3 Array querying system functions

Syntax 16-2—Array querying function syntax (not in Annex A)

SystemVerilog provides new system functions to return information about an array

— $left shall return the left bound (msb) of the dimension

— $right shall return the right bound (lsb) of the dimension

— $low shall return the minimum of $left and $right of the dimension

— $high shall return the maximum of $left and $right of the dimension

size_function ::= // not in Annex A
$bits (expression)

array_query_functions ::= // not in Annex A
array_dimension_function (array_identifier , dimension_expression)

| $dimensions (array_identifier)

array_dimension_function ::=
$left

| $right
| $low
| $high
| $increment
| $length

dimension_expression ::= expression

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 85

— $increment shall return 1 if $left is greater than or equal to $right, and -1 if $left is less than
$right

— $length shall return the number of elements in the dimension, which is equivalent to $high - $low + 1

— $dimensions shall return the number of dimensions in the array, or 0 for a scalar object

The dimensions of an array shall be numbered as follows: The slowest varying dimension (packed or
unpacked) is dimension 1. Successively faster varying dimensions have sequentially higher dimension num-
bers. For instance:

// Dimension numbers
// 3 4 1 2
reg [3:0][2:1] n [1:5][2:8];

For an integer or bit type, only dimension 1 is defined. For an integer N declared without a range specifier, its
bounds are assumed to be [$bits(N)-1:0].

If an out-of-range dimension is specified, these functions shall return a logic X.

16.4 Assertion severity system tasks

Syntax 16-3—Assertion severity system task syntax (not in Annex A)

SystemVerilog assertions have a severity level associated with any assertion failures detected. By default, the
severity of an assertion failure is “error”. The severity levels can be specified by including one of the following
severity system tasks in the assertion fail statement:

— $fatal shall generate a run-time fatal assertion error, which terminates the simulation with an error code.
The first argument passed to $fatal shall be consistent with the corresponding argument to the Verilog
$finish system task, which sets the level of diagnostic information reported by the tool.

— $error shall be a run-time error.

— $warning shall be a run-time warning, which can be suppressed in a tool-specific manner.

— $info shall indicate that the assertion failure carries no specific severity.

All of these severity system tasks shall print a tool-specific message, indicating the severity of the failure, and
specific information about the failure, which shall include the following information:

— The file name and line number of the assertion statement,

assert_severity_tasks ::= // not in Annex A
fatal_message_task

| nonfatal_message_task

fatal_message_task ::=
$fatal ;

| $fatal (finish_number [, message_argument { , message_argument] }) ;

nonfatal_message_task ::=
severity_task ;

| severity_task ([message_argument { , message_argument] }) ;

severity_task ::= $error | $warning | $info

finish_number ::= 0 | 1 | 2

message_argument ::= string | expression

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

86 Copyright 2002 Accellera. All rights reserved.

— The hierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also report the simulation run-time at which the severity system task is
called.

Each of the severity tasks can include optional user-defined information to be reported. The <user-
defined_message> shall use the same syntax as the Verilog $display system task, and can include any num-
ber of arguments.

16.5 Assertion control system tasks

Syntax 16-4—Assertion control syntax (not in Annex A)

SystemVerilog provides three system tasks to control assertions.

— $assertoff shall stop the checking of all specified assertions until a subsequent $asserton. An assertion
that is already executing, including execution of the pass or fail statement, is not affected

— $assertkill shall abort execution of any currently executing specified assertions and then stop the
checking of all specified assertions until a subsequent $asserton.

— $asserton shall re-enable the execution of all specified assertions

16.6 Assertion system functions

Syntax 16-5—Assertion system function syntax (not in Annex A)

assert_control_tasks ::= // not in Annex A
assert_task ;

| assert_task (levels [, list_of_modules_or_assertions]) ;

assert_task ::=
$asserton

| $assertoff
| $assertkill

list_of_modules_or_assertions ::=
module_or_assertion { , module_or_assertion }

module_or_assertion ::=
module_identifier

| assertion_identifier
| hierarchical_identifier

assert_boolean_functions ::= // not in Annex A
assert_function (expression) ;

| $insetz (expression, expression [{ , expression }]) ;

assert_function ::=
$onehot

| $onehot0
| $inset
| $isunknown

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 87

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot returns true if one and only one bit of expression is high.

— $onehot0 returns true if at most one bit of expression is low.

— $inset returns true if the first expression is equal to at least one of the subsequent expression arguments.

— $insetz returns true if the first expression is equal to at least one other expression argument. Comparison
is performed using casez semantics, so Z or ? bits are treated as don’t-cares.

— $isunknown returns true if any bit of the expression is X. This is equivalent to
^expression === ’bx.

All of the above system functions shall have a return type of bit. A return value of 1’b1 shall indicate true,
and a return value of 1’b0 shall indicate false.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

88 Copyright 2002 Accellera. All rights reserved.

Section 17
Compiler Directives

17.1 Introduction (informative)

Verilog provides the ‘define text substitution macro compiler directive. A macro can contain arguments,
whose values can be set for each instance of the macro. For example:

‘define NAND(dval) nand #(dval)

‘NAND(3) i1 (y, a, b); //‘NAND(3) macro substitutes with: nand #(3)

‘NAND(3:4:5) i2 (o, c, d); //‘NAND(3:4:5) macro substitutes with: nand
#(3:4:5)

SystemVerilog enhances the capabilities of the ‘define compiler directive to support strings as macro argu-
ments

17.2 ‘define macros

In SystemVerilog, the ‘define macro text can include a backslash (\) at the end of a line to show continua-
tion on the next line.

The macro text can also include an isolated quote, which must be preceded by a back tick, `". This allows
macro arguments to be included in strings. If the strings are to contain \", the macro text should be written
`\`". Otherwise, the backslash will be treated as the start of an escaped identifier.

The macro text can also include a double back tick, ``, to allow identifiers to be constructed from arguments,
e.g.

‘define foo(f) f‘‘_suffix

This expands:

foo(bar)

to:

bar_suffix

Note that there must be no space before the parenthesis. Otherwise, it is treated as macro text.

The ‘include directive can be followed by a macro, instead of a literal string:

‘define f1 "/home/foo/myfile"
‘include ‘f1

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 89

Section 18
Features under consideration for removal from SystemVerilog

18.1 Introduction (informative)

Certain Verilog language features can be simulation inefficient, easily abused, and the source of design prob-
lems. These features are being considered for removal from the SystemVerilog language, if there is an alternate
method for these features.

The Verilog language features that have been identified in this standard as ones which can be removed from
Verilog are defparam and procedural assign/deassign.

18.2 Defparam statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the defparam method of specifying the value of a parameter can be a source of design errors,
and can be an impediment to tool implementation. The defparam statement does not provide a capability that
can not be done by another method, which avoids these problems. Therefore, the committee has placed the
defparam statement on a deprecation list. This means is that a future revision of the Verilog standard may not
require support for this feature. This current standard still requires tools to support the defparam statement.
However, users are strongly encouraged to migrate their code to use one of the alternate methods of parameter
redefinition.

Prior to the acceptance of the Verilog-2001 Standard, it was common practice to change one or more parame-
ters of instantiated modules using a separate defparam statement. Defparam statements can be a source of tool
complexity and design problems.

A defparam statement can precede the instance to be modified, can follow the instance to be modified, can be
at the end of the file that contains the instance to be modified, can be in a separate file from the instance to be
modified, can modify parameters hierarchically that in turn must again be passed to other defparam state-
ments to modify, and can modify the same parameter from two different defparam statements (with unde-
fined results). Due to the many ways that a defparam can modify parameters, a Verilog compiler cannot
insure the final parameter values for an instance until after all of the design files are compiled.

Prior to Verilog-2001, the only other method available to change the values of parameters on instantiated mod-
ules was to use implicit in-line parameter redefinition. This method uses #(parameter_value) as part of
the module instantiation. Implicit in-line parameter redefinition syntax requires that all parameters up to and
including the parameter to be changed must be placed in the correct order, and must be assigned values.

Verilog-2001 introduced explicit in-line parameter redefinition, in the form
#(.parameter_name(value)), as part of the module instantiation. This method gives the capability to
pass parameters by name in the instantiation, which supplies all of the necessary parameter information to the
model in the instantiation itself.

The practice of using defparam statements is highly discouraged. Engineers are encouraged to take advantage
of the Verilog-2001 explicit in-line parameter redefinition capability.

See section 14 for more details on parameters.

18.3 Procedural assign and deassign statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the procedural assign and deassign statements can be a source of design errors, and can be
an impediment to tool implementation. The procedural assign/deassign statements do not provide a capa-
bility that can not be done by another method, which avoids these problems. Therefore, the committee has

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

90 Copyright 2002 Accellera. All rights reserved.

placed the procedural assign/deassign statements on a deprecation list. This means that a future revision of
the Verilog standard may not require support for theses statements. This current standard still requires tools to
support the procedural assign/deassign statements. However, users are strongly encouraged to migrate
their code to use one of the alternate methods of procedural or continuous assignments.

Verilog has two forms of the assign statement:

— Continuous assignments, placed outside of any procedures

— Procedural continuous assignments, placed within a procedure

Continuous assignment statements are a separate process that are active throughout simulation. The continuous
assignment statement accurately represents combinational logic at an RTL level of modeling, and is frequently
used.

Procedural continuous assignment statements become active when the assign statement is executed in the
procedure. The process can be de-activated using a deassign statement. The procedural assign/deassign
statements are seldom needed to model hardware behavior. In the unusual circumstances where the behavior of
procedural continuous assignments are required, the same behavior can be modeled using the procedural force
and release statements.

The fact that the assign statement to be used both outside and inside a procedure can cause confusion and
errors in Verilog models. The practice of using the assign and deassign statements inside of procedural
blocks is highly discouraged.

See section 8 for more information on procedural assignments.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 91

Annex A
Formal Syntax

(Normative)

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The conventions used are:

— Keywords and punctuation are in bold text.

— Syntactic categories are named in non-bold text.

— A vertical bar (|) separates alternatives.

— Square brackets ([]) enclose optional items.

— Braces ({ }) enclose items which may be repeated zero or more times.

The full syntax and semantics of Verilog and SystemVerilog are not described solely using BNF. The norma-
tive text description contained within the chapters of the IEEE 1364-2001 Verilog standard and this System-
Verilog document provide additional details on the syntax and semantics described in this BNF.

A.1 Source text

A.1.1 Library source text
library_text ::= { library_descriptions }

library_descriptions ::=
library_declaration

| include_statement
| config_declaration

library_declaration ::=
library library_identifier file_path_spec [{ , file_path_spec }]

[-incdir file_path_spec [{ , file_path_spec }]] ;

file_path_spec ::= file_path

include_statement ::= include <file_path_spec> ;

A.1.2 Configuration source text
config_declaration ::=

config config_identifier ;
design_statement
{config_rule_statement}

endconfig

design_statement ::= design { [library_identifier.]cell_identifier } ;

config_rule_statement ::=
default_clause liblist_clause

| inst_clause liblist_clause
| inst_clause use_clause
| cell_clause liblist_clause
| cell_clause use_clause

default_clause ::= default

inst_clause ::= instance inst_name

inst_name ::= topmodule_identifier{.instance_identifier}

cell_clause ::= cell [library_identifier.]cell_identifier

liblist_clause ::= liblist [{library_identifier}]

use_clause ::= use [library_identifier.]cell_identifier[:config]

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

92 Copyright 2002 Accellera. All rights reserved.

A.1.3 Module and primitive source text
source_text ::= [timeunits_declaration] { description }

description ::=
module_declaration

| udp_declaration
| module_root_item
| statement

module_declaration ::=
{ attribute_instance } module_keyword module_identifier [parameter_port_list]

[list_of_ports] ; [timeunits_declaration] { module_item }
endmodule

| { attribute_instance } module_keyword module_identifier [parameter_port_list]
[list_of_port_declarations] ; [timeunits_declaration] { non_port_module_item }

endmodule

module_keyword ::= module | macromodule

interface_declaration ::=
{ attribute_instance } interface interface_identifier [parameter_port_list]

[list_of_ports] ; [timeunits_declaration] { interface_item }
endinterface [: interface_identifier]

| { attribute_instance } interface interface_identifier [parameter_port_list]
[list_of_port_declarations] ; [timeunits_declaration] { non_port_interface_item }

endinterface [: interface_identifier]

timeunits_declaration ::=
timeunit time_literal ;

| timeprecision time_literal ;
| timeunit time_literal ;

timeprecision time_literal ;
| timeprecision time_literal ;

timeunit time_literal ;

A.1.4 Module parameters and ports
parameter_port_list ::= # (parameter_declaration { , parameter_declaration })

list_of_ports ::= (port { , port })

list_of_port_declarations ::=
(port_declaration { , port_declaration })

| ()

port ::=
[port_expression]

| . port_identifier ([port_expression])

port_expression ::=
port_reference

| { port_reference { , port_reference } }

port_reference ::=
port_identifier

| port_identifier [constant_expression]
| port_identifier [range_expression]

port_declaration ::=
{ attribute_instance } inout_declaration

| { attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } interface_port_declaration

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 93

A.1.5 Module items
module_common_item ::=

{ attribute_instance } module_or_generate_item_declaration
| { attribute_instance } interface_instantiation

module_item ::=
port_declaration ;

| non_port_module_item

module_or_generate_item ::=
{ attribute_instance } parameter_override

| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_statement
| { attribute_instance } latch_statement
| { attribute_instance } ff_statement
| module_common_item

module_root_item ::=
{ attribute_instance } module_instantiation

| { attribute_instance } local_parameter_declaration
| interface_declaration
| module_common_item

module_or_generate_item_declaration ::=
net_declaration

| data_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration

non_port_module_item ::=
{ attribute_instance } generated_module_instantiation

| { attribute_instance } local_parameter_declaration
| module_or_generate_item
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration
| module_declaration

parameter_override ::= defparam list_of_param_assignments ;

A.1.6 Interface items
interface_or_generate_item ::=

{ attribute_instance } continuous_assign
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_statement
| { attribute_instance } latch_statement
| { attribute_instance } ff_statement
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| module_common_item

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

94 Copyright 2002 Accellera. All rights reserved.

| { attribute_instance } modport_declaration

interface_item ::=
port_declaration

| non_port_interface_item

non_port_interface_item ::=
{ attribute_instance } generated_interface_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specparam_declaration
| interface_or_generate_item
| interface_declaration

A.2 Declarations

A.2.1 Declaration types

A.2.1.1 Module parameter declarations

local_parameter_declaration ::=
localparam [signing] { packed_dimension } [range] list_of_param_assignments ;

| localparam data_type list_of_param_assignments ;

parameter_declaration ::=
parameter [signing] { packed_dimension } [range] list_of_param_assignments

| parameter data_type list_of_param_assignments
| parameter type list_of_type_assignments

specparam_declaration ::=
specparam [range] list_of_specparam_assignments ;

A.2.1.2 Port declarations

inout_declaration ::= inout [port_type] list_of_port_identifiers

input_declaration ::= input [port_type] list_of_port_identifiers

output_declaration ::=
output [port_type] list_of_port_identifiers

| output data_type list_of_variable_port_identifiers

interface_port_declaration ::=
interface list_of_interface_identifiers

| interface . modport_identifier list_of_interface_identifiers
| identifier list_of_interface_identifiers
| identifier . modport_identifier list_of_interface_identifiers

A.2.1.3 Type declarations

block_data_declaration ::=
block_variable_declaration

| constant_declaration
| type_declaration

constant_declaration ::= const data_type const_assignment ;

data_declaration ::=
variable_declaration

| constant_declaration
| type_declaration

event_declaration ::= event list_of_event_identifiers ;

genvar_declaration ::= genvar list_of_genvar_identifiers ;

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 95

net_declaration ::=
net_type [signing]

[delay3] list_of_net_identifiers ;
| net_type [drive_strength] [signing]

[delay3] list_of_net_decl_assignments ;
| net_type [vectored | scalared] [signing]

{ packed_dimension } range [delay3] list_of_net_identifiers ;
| net_type [drive_strength] [vectored | scalared] [signing]

{ packed_dimension } range [delay3] list_of_net_decl_assignments ;
| trireg [charge_strength] [signing]

[delay3] list_of_net_identifiers ;
| trireg [drive_strength] [signing]

[delay3] list_of_net_decl_assignments ;
| trireg [charge_strength] [vectored | scalared] [signing]

{ packed_dimension } range [delay3] list_of_net_identifiers ;
| trireg [drive_strength] [vectored | scalared] [signing]

{ packed_dimension } range [delay3] list_of_net_decl_assignments ;

type_declaration ::=
typedef data_type type_declaration_identifier ;

| typedef interface_identifier { [constant_expression] } . type_identifier
type_declaration_identifier ;

block_variable_declaration ::=
[lifetime] data_type list_of_variable_identifiers ;

| lifetime data_type list_of_variable_decl_assignments ;

variable_declaration ::=
[lifetime] data_type list_of_variable_identifiers_or_assignments ;

lifetime ::= static | automatic

A.2.2 Declaration data types

A.2.2.1 Net and variable types

data_type ::=
integer_vector_type [signing] { packed_dimension } [range]

| integer_atom_type [signing] { packed_dimension }
| type_declaration_identifier
| non_integer_type
| struct [packed] [signing] { { struct_union_member } }
| union [packed] [signing] { { struct_union_member } }
| enum [integer_type [signing] { packed_dimension }]

{ enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }
| void

integer_type ::= integer_vector_type | integer_atom_type

integer_atom_type ::= byte | char | shortint | int | longint | integer

integer_vector_type ::= bit | logic | reg

non_integer_type ::= time | shortreal | real | realtime | $built-in

net_type ::= supply0 | supply1 | tri | triand | trior | tri0 | tri1 | wire | wand | wor

port_type ::=
data_type { packed_dimension }

| net_type [signing] { packed_dimension }
| trireg [signing] { packed_dimension }
| event
| [signing] { packed_dimension } range

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

96 Copyright 2002 Accellera. All rights reserved.

signing ::= [signed] | [unsigned]

simple_type_or_number ::= simple_type | number

simple_type ::= integer_type | non_integer_type | type_identifier

struct_union_member ::= data_type list_of_variable_identifiers_or_assignments ;

A.2.2.2 Strengths

drive_strength ::=
(strength0 , strength1)

| (strength1 , strength0)
| (strength0 , highz1)
| (strength1 , highz0)
| (highz0 , strength1)
| (highz1 , strength0)

strength0 ::= supply0 | strong0 | pull0 | weak0

strength1 ::= supply1 | strong1 | pull1 | weak1

charge_strength ::= (small) | (medium) | (large)

A.2.2.3 Delays

delay3 ::= # delay_value | # (delay_value [, delay_value [, delay_value]])

delay2 ::= # delay_value | # (delay_value [, delay_value])

delay_value ::=
unsigned_number

| parameter_identifier
| specparam_identifier
| mintypmax_expression

A.2.3 Declaration lists
list_of_event_identifiers ::= event_identifier [unpacked_dimension { unpacked_dimension }]

{ , event_identifier [unpacked_dimension { unpacked_dimension }] }

list_of_genvar_identifiers ::= genvar_identifier { , genvar_identifier }

list_of_interface_identifiers ::= interface_identifier { unpacked_dimension }
{ , interface_identifier { unpacked_dimension } }

list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment }

list_of_net_identifiers ::= net_identifier [unpacked_dimension { unpacked_dimension }]
{ , net_identifier [unpacked_dimension { unpacked_dimension }] }

list_of_param_assignments ::= param_assignment { , param_assignment }

list_of_port_identifiers ::= port_identifier { unpacked_dimension }
{ , port_identifier { unpacked_dimension } }

list_of_udp_port_identifiers ::= port_identifier { , port_identifier }

list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }

list_of_type_assignments ::= type_assignment { , type_assignment }

list_of_variable_decl_assignments ::= variable_decl_assign_identifier { , variable_decl_assign_identifier }

list_of_variable_identifiers ::= variable_declaration_identifier { , variable_declaration_identifier }

list_of_variable_identifiers_or_assignments ::=
list_of_variable_decl_assignments

| list_of_variable_identifiers

list_of_variable_port_identifiers ::= port_identifier { unpacked_dimension } [= constant_expression]
{ , port_identifier { unpacked_dimension } [= constant_expression] }

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 97

A.2.4 Declaration assignments
const_assignment ::= const_identifier = constant_expression

net_decl_assignment ::= net_identifier = expression

param_assignment ::= parameter_identifier = constant_param_expression

specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression

| pulse_control_specparam

type_assignment ::= type_identifier = data_type

pulse_control_specparam ::=
PATHPULSE$ = (reject_limit_value [, error_limit_value]) ;

| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor
= (reject_limit_value [, error_limit_value]) ;

error_limit_value ::= limit_value

reject_limit_value ::= limit_value

limit_value ::= constant_mintypmax_expression

A.2.5 Declaration ranges
unpacked_dimension ::= [dimension_constant_expression : dimension_constant_expression]

packed_dimension ::= [dimension_constant_expression : dimension_constant_expression]

range ::= [msb_constant_expression : lsb_constant_expression]

A.2.6 Function declarations
function_declaration ::=

function [automatic] [signing] [range_or_type]
[interface_identifier .] function_identifier ;

{ function_item_declaration }
{ function_statement }
endfunction [: function_identifier]

| function [automatic] [signing] [range_or_type]
[interface_identifier .] function_identifier (function_port_list) ;

{ block_item_declaration }
{ function_statement }
endfunction [: function_identifier]

function_item_declaration ::=
block_item_declaration

| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;

function_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

function_port_list ::= function_port_item { , function_port_item }

function_prototype ::= function data_type (list_of_function_proto_formals)

named_function_proto::= function data_type function_identifier (list_of_function_proto_formals)

list_of_function_proto_formals ::=
[{ attribute_instance } function_proto_formal { , { attribute_instance } function_proto_formal }]

function_proto_formal ::=
input data_type [variable_declaration_identifier]

| inout data_type [variable_declaration_identifier]

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

98 Copyright 2002 Accellera. All rights reserved.

| output data_type [variable_declaration_identifier]
| variable_declaration_identifier

range_or_type ::=
{ packed_dimension } range

| data_type

A.2.7 Task declarations
task_declaration ::=

task [automatic] [interface_identifier .] task_identifier ;
{ task_item_declaration }
{ statement }
endtask [: task_identifier]

| task [automatic] [interface_identifier .] task_identifier (task_port_list) ;
{ block_item_declaration }
{ statement }
endtask [: task_identifier]

task_item_declaration ::=
block_item_declaration

| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;

task_port_list ::= task_port_item { , task_port_item }

task_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

task_prototype ::=
task ({ attribute_instance } task_proto_formal { , { attribute_instance } task_proto_formal })

named_task_proto ::= task task_identifier (task_proto_formal { , task_proto_formal })

task_proto_formal ::=
input data_type [variable_declaration_identifier]

| inout data_type [variable_declaration_identifier]
| output data_type [variable_declaration_identifier]

A.2.8 Block item declarations
block_item_declaration ::=

{ attribute_instance } block_data_declaration
| { attribute_instance } event_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;

A.2.9 Interface declarations
modport_declaration ::= modport list_of_modport_identifiers ;

list_of_modport_identifiers ::= modport_item { , modport_item }

modport_item ::= modport_identifier (modport_port { , modport_port })

modport_port ::=
input [port_type] port_identifier

| output [port_type] port_identifier
| inout [port_type] port_identifier
| interface_identifier . port_identifier
| import_export task named_task_proto
| import_export function named_fn_proto

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 99

| import_export task_or_function_identifier { , task_or_function_identifier }

import_export ::= import | export

A.3 Primitive instances

A.3.1 Primitive instantiation and instances
gate_instantiation ::=

cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance } ;
| enable_gatetype [drive_strength] [delay3] enable_gate_instance { , enable_gate_instance } ;
| mos_switchtype [delay3] mos_switch_instance { , mos_switch_instance } ;
| n_input_gatetype [drive_strength] [delay2] n_input_gate_instance { , n_input_gate_instance } ;
| n_output_gatetype [drive_strength] [delay2] n_output_gate_instance

{ , n_output_gate_instance } ;
| pass_en_switchtype [delay2] pass_enable_switch_instance { , pass_enable_switch_instance } ;
| pass_switchtype pass_switch_instance { , pass_switch_instance } ;
| pulldown [pulldown_strength] pull_gate_instance { , pull_gate_instance } ;
| pullup [pullup_strength] pull_gate_instance { , pull_gate_instance } ;

cmos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal ,
ncontrol_terminal , pcontrol_terminal)

enable_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)

mos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)

n_input_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal { , input_terminal })

n_output_gate_instance ::= [name_of_gate_instance] (output_terminal { , output_terminal } ,
input_terminal)

pass_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal)

pass_enable_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal ,
enable_terminal)

pull_gate_instance ::= [name_of_gate_instance] (output_terminal)

name_of_gate_instance ::= gate_instance_identifier { range }

A.3.2 Primitive strengths
pulldown_strength ::=

(strength0 , strength1)
| (strength1 , strength0)
| (strength0)

pullup_strength ::=
(strength0 , strength1)

| (strength1 , strength0)
| (strength1)

A.3.3 Primitive terminals
enable_terminal ::= expression

inout_terminal ::= net_lvalue

input_terminal ::= expression

ncontrol_terminal ::= expression

output_terminal ::= net_lvalue

pcontrol_terminal ::= expression

A.3.4 Primitive gate and switch types
cmos_switchtype ::= cmos | rcmos

enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

100 Copyright 2002 Accellera. All rights reserved.

mos_switchtype ::= nmos | pmos | rnmos | rpmos

n_input_gatetype ::= and | nand | or | nor | xor | xnor

n_output_gatetype ::= buf | not

pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0

pass_switchtype ::= tran | rtran

A.4 Module, interface and generated instantiation

A.4.1 Instantiation

A.4.1.1 Module instantiation

module_instantiation ::=
module_identifier [parameter_value_assignment] module_instance { , module_instance } ;

parameter_value_assignment ::= # (list_of_parameter_assignments)

list_of_parameter_assignments ::=
ordered_parameter_assignment { , ordered_parameter_assignment }

| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression | data_type

named_parameter_assignment ::=
. parameter_identifier ([expression])

| . parameter_identifier ([data_type])

module_instance ::= name_of_instance ([list_of_port_connections])

name_of_instance ::= module_instance_identifier { range }

list_of_port_connections ::=
ordered_port_connection { , ordered_port_connection }

| dot_named_port_connection { , dot_named_port_connection }
| { named_port_connection , } dot_star_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [expression]

named_port_connection ::= { attribute_instance } .port_identifier ([expression])

dot_named_port_connection ::=
{ attribute_instance } .port_identifier

| named_port_connection

dot_star_port_connection ::= { attribute_instance } .*

A.4.1.2 Interface instantiation

interface_instantiation ::=
interface_identifier [parameter_value_assignment] module_instance { , module_instance } ;

A.4.2 Generated instantiation

A.4.2.1 Generated module instantiation

generated_module_instantiation ::= generate { generate_module_item } endgenerate

generate_module_item_or_null ::= generate_module_item | ;

generate_module_item ::=
generate_module_conditional_statement

| generate_module_case_statement
| generate_module_loop_statement
| [generate_block_identifier :] generate_module_block
| module_or_generate_item

generate_module_conditional_statement ::=
if (constant_expression) generate_module_item_or_null [else generate_module_item_or_null]

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 101

generate_module_case_statement ::=
case (constant_expression) genvar_module_case_item { genvar_module_case_item }endcase

genvar_module_case_item ::=
constant_expression { , constant_expression } : generate_module_item_or_null

| default [:] generate_module_item_or_null

generate_module_loop_statement ::=
for (genvar_decl_assignment ; constant_expression ; genvar_assignment)

generate_module_named_block

genvar_assignment ::=
genvar_identifier = constant_expression

| genvar_identifier assignment_operator constant_expression
| inc_or_dec_operator genvar_identifier
| genvar_identifier inc_or_dec_operator

genvar_decl_assignment ::=
[genvar] genvar_identifier = constant_expression

generate_module_named_block ::=
begin : generate_block_identifier { generate_module_item } end [: generate_block_identifier]

| generate_block_identifier : generate_module_block

generate_module_block ::=
begin [: generate_block_identifier] { generate_module_item } end [: generate_block_identifier]

A.4.2.2 Generated interface instantiation

generated_interface_instantiation ::= generate { generate_interface_item } endgenerate

generate_interface_item_or_null ::= generate_interface_item | ;

generate_interface_item ::=
generate_interface_conditional_statement

| generate_interface_case_statement
| generate_interface_loop_statement
| [generate_block_identifier :] generate_interface_block
| interface_or_generate_item

generate_interface_conditional_statement ::=
if (constant_expression) generate_interface_item_or_null [else generate_interface_item_or_null]

generate_interface_case_statement ::=
case (constant_expression) genvar_interface_case_item { genvar_interface_case_item } endcase

genvar_interface_case_item ::=
constant_expression { , constant_expression } : generate_interface_item_or_null

| default [:] generate_interface_item_or_null

generate_interface_loop_statement ::=
for (genvar_decl_assignment ; constant_expression ; genvar_assignment)

generate_interface_named_block

generate_interface_named_block ::=
begin : generate_block_identifier { generate_interface_item } end [: generate_block_identifier]

| generate_block_identifier : generate_interface_block

generate_interface_block ::=
begin [: generate_block_identifier]
{ generate_interface_item }
end [: generate_block_identifier]

A.5 UDP declaration and instantiation

A.5.1 UDP declaration

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

102 Copyright 2002 Accellera. All rights reserved.

udp_declaration ::=
{ attribute_instance } primitive udp_identifier (udp_port_list) ;

udp_port_declaration { udp_port_declaration }
udp_body

endprimitive
| { attribute_instance } primitive udp_identifier (udp_declaration_port_list) ;

udp_body
endprimitive

A.5.2 UDP ports
udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }

udp_declaration_port_list ::= udp_output_declaration , udp_input_declaration { , udp_input_declaration }

udp_port_declaration ::=
udp_output_declaration ;

| udp_input_declaration ;
| udp_reg_declaration ;

udp_output_declaration ::=
{ attribute_instance } output port_identifier

| { attribute_instance } output reg port_identifier [= constant_expression]

udp_input_declaration ::= { attribute_instance } input list_of_udp_port_identifiers

udp_reg_declaration ::= { attribute_instance } reg variable_identifier

A.5.3 UDP body
udp_body ::= combinational_body | sequential_body

combinational_body ::= table combinational_entry { combinational_entry } endtable

combinational_entry ::= level_input_list : output_symbol ;

sequential_body ::= [udp_initial_statement] table sequential_entry { sequential_entry } endtable

udp_initial_statement ::= initial output_port_identifier = init_val ;

init_val ::= 1’b0 | 1’b1 | 1’bx | 1’bX | 1’B0 | 1’B1 | 1’Bx | 1’BX | 1 | 0

sequential_entry ::= seq_input_list : current_state : next_state ;

seq_input_list ::= level_input_list | edge_input_list

level_input_list ::= level_symbol { level_symbol }

edge_input_list ::= { level_symbol } edge_indicator { level_symbol }

edge_indicator ::= (level_symbol level_symbol) | edge_symbol

current_state ::= level_symbol

next_state ::= output_symbol | -

output_symbol ::= 0 | 1 | x | X

level_symbol ::= 0 | 1 | x | X | ? | b | B

edge_symbol ::= r | R | f | F | p | P | n | N | *

A.5.4 UDP instantiation
udp_instantiation ::= udp_identifier [drive_strength] [delay2] udp_instance { , udp_instance } ;

udp_instance ::= [name_of_udp_instance] { range } (output_terminal , input_terminal { , input_terminal })

name_of_udp_instance ::= udp_instance_identifier [range]

A.6 Behavioral statements

A.6.1 Continuous assignment statements
continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 103

list_of_net_assignments ::= net_assignment { , net_assignment }

net_assignment ::= net_lvalue = expression

A.6.2 Procedural blocks and assignments
initial_construct ::= initial statement

always_construct ::= always statement

combinational_statement ::= always_comb statement

latch_statement ::= always_latch statement

ff_statement ::= always_ff statement

blocking_assignment ::=
variable_lvalue = delay_or_event_control expression

| operator_assignment

operator_assignment ::= variable_lvalue assignment_operator expression

assignment_operator ::=
= | += | -= | *= | /= | %= | &= | |= | ^= | <<= | >>= | <<<= | >>>=

nonblocking_assignment ::= variable_lvalue <= [delay_or_event_control] expression

procedural_continuous_assignments ::=
assign variable_assignment

| deassign variable_lvalue
| force variable_assignment
| force net_assignment
| release variable_lvalue
| release net_lvalue

function_blocking_assignment ::= variable_lvalue = expression

function_statement_or_null ::=
function_statement

| { attribute_instance } ;

variable_assignment ::= variable_lvalue = expression

A.6.3 Parallel and sequential blocks
function_seq_block ::=

begin [: block_identifier { block_item_declaration }] { function_statement } end

par_block ::=
fork [: block_identifier] { block_item_declaration } { statement } join [: block_identifier]

seq_block ::=
begin [: block_identifier] { block_item_declaration } { statement } end [: block_identifier]

A.6.4 Statements
statement ::= [block_identifier :] statement_item

statement_item ::=
{ attribute_instance } blocking_assignment ;

| { attribute_instance } nonblocking_assignment ;
| { attribute_instance } procedural_continuous_assignments ;
| { attribute_instance } case_statement
| { attribute_instance } conditional_statement
| { attribute_instance } inc_or_dec_expression

| { attribute_instance } function_call7
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

104 Copyright 2002 Accellera. All rights reserved.

| { attribute_instance } jump_statement
| { attribute_instance } par_block
| { attribute_instance } procedural_timing_control_statement
| { attribute_instance } seq_block
| { attribute_instance } system_task_enable
| { attribute_instance } task_enable
| { attribute_instance } wait_statement
| { attribute_instance } process statement
| { attribute_instance } proc_assertion

statement_or_null ::=
statement

| { attribute_instance } ;

function_statement ::= [block_identifier :] function_statement_item

function_statement_item ::=
{ attribute_instance } function_blocking_assignment ;

| { attribute_instance } function_case_statement
| { attribute_instance } function_conditional_statement
| { attribute_instance } inc_or_dec_expression

| { attribute_instance } function_call7
| { attribute_instance } function_loop_statement
| { attribute_instance } jump_statement
| { attribute_instance } function_seq_block
| { attribute_instance } disable_statement
| { attribute_instance } system_task_enable

A.6.5 Timing control statements
procedural_timing_control_statement ::=

delay_or_event_control statement_or_null

delay_or_event_control ::=
delay_control

| event_control
| repeat (expression) event_control

delay_control ::=
delay_value

| # (mintypmax_expression)

event_control ::=
@ event_identifier

| @ (event_expression)
| @*
| @ (*)

event_expression ::=
expression [iff expression]

| hierarchical_identifier [iff expression]
| [edge] expression [iff expression]
| event_expression or event_expression
| event_expression , event_expression

edge ::= posedge | negedge | changed

jump_statement ::=
return [expression] ;

| break ;
| continue ;

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 105

wait_statement ::=
wait (expression) statement_or_null

event_trigger ::=
-> hierarchical_event_identifier ;

disable_statement ::=
disable hierarchical_task_identifier ;

| disable hierarchical_block_identifier ;

A.6.6 Conditional statements
conditional_statement ::=

[unique_priority] if (expression) statement_or_null [else statement_or_null]
| if_else_if_statement

if_else_if_statement ::=
[unique_priority] if (expression) statement_or_null
{ else [unique_priority] if (expression) statement_or_null }
[else statement_or_null]

function_conditional_statement ::=
[unique_priority] if (expression) function_statement_or_null [else function_statement_or_null]

| function_if_else_if_statement

function_if_else_if_statement ::=
[unique_priority] if (expression) function_statement_or_null
{ else [unique_priority] if (expression) function_statement_or_null }
[else function_statement_or_null]

unique_priority ::= unique | priority

A.6.7 Case statements
case_statement ::=

[unique_priority] case (expression) case_item { case_item } endcase
| [unique_priority] casez (expression) case_item { case_item } endcase
| [unique_priority] casex (expression) case_item { case_item } endcase

case_item ::=
expression { , expression } : statement_or_null

| default [:] statement_or_null

function_case_statement ::=
[unique_priority] case (expression) function_case_item { function_case_item } endcase

| [unique_priority] casez (expression) function_case_item { function_case_item } endcase
| [unique_priority] casex (expression) function_case_item { function_case_item } endcase

function_case_item ::=
expression { , expression } : function_statement_or_null

| default [:] function_statement_or_null

A.6.8 Looping statements
function_loop_statement ::=

forever function_statement
| repeat (expression) function_statement_or_null
| while (expression) function_statement_or_null
| for (variable_decl_or_assignment ; expression ; variable_assignment)

function_statement_or_null
| do function_statement while (expression)

loop_statement ::=
forever statement

| repeat (expression) statement_or_null

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

106 Copyright 2002 Accellera. All rights reserved.

| while (expression) statement_or_null
| for (variable_decl_or_assignment ; expression ; variable_assignment) statement_or_null
| do statement while (expression)

variable_decl_or_assignment ::=
data_type list_of_variable_identifiers_or_assignments ;

| variable_assignment

A.6.9 Task enable statements
system_task_enable ::= system_task_identifier [(expression { , expression })] ;

task_enable ::= hierarchical_task_identifier [(expression { , expression })] ;

A.6.10 Assertion statements
proc_assertion ::=

immediate_assert
| strobed_assert
| clocked_immediate_assert
| clocked_strobed_assert

immediate_assert ::= assert (expression)
statement_or_null
[else statement_or_null]

strobed_assert ::= assert_strobe (expression)
restricted_statement_or_null
[else restricted_statement_or_null]

clocked_immediate_assert ::= assert (expr_sequence) step_control
statement_or_null
[else statement_or_null]

clocked_strobed_assert ::= assert_strobe (expr_sequence) step_control
restricted_statement_or_null
[else restricted_statement_or_null]

restricted_statement_or_null ::=
restricted_statement

| { attribute_instance } ;

restricted_statement ::=
[block_identifier :] restricted_statement_item

restricted_statement_item ::=
{ attribute_instance } proc_assertion

| { attribute_instance } system_task_enable
| { attribute_instance } delay_or_event_control statement
| { attribute_instance } restricted_seq_block

restricted_seq_block ::= begin [: block_identifier] { block_item_declaration }{ restricted_statement }
end [: block_identifier]

expr_sequence ::=
expression

| [constant_expression]
| range
| expr_sequence ; expr_sequence
| expr_sequence * [constant_expression]
| expr_sequence * range
| (expr_sequence)

step_control ::=
@@ event_identifier

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 107

| @@ (event_expression)

A.7 Specify section

A.7.1 Specify block declaration
specify_block ::= specify { specify_item } endspecify

specify_item ::=
specparam_declaration

| pulsestyle_declaration
| showcancelled_declaration
| path_declaration
| system_timing_check

pulsestyle_declaration ::=
pulsestyle_onevent list_of_path_outputs ;

| pulsestyle_ondetect list_of_path_outputs ;

showcancelled_declaration ::=
showcancelled list_of_path_outputs ;

| noshowcancelled list_of_path_outputs ;

A.7.2 Specify path declarations
path_declaration ::=

simple_path_declaration ;
| edge_sensitive_path_declaration ;
| state_dependent_path_declaration ;

simple_path_declaration ::=
parallel_path_description = path_delay_value

| full_path_description = path_delay_value

parallel_path_description ::=
(specify_input_terminal_descriptor [polarity_operator] => specify_output_terminal_descriptor)

full_path_description ::=
(list_of_path_inputs [polarity_operator] *> list_of_path_outputs)

list_of_path_inputs ::=
specify_input_terminal_descriptor { , specify_input_terminal_descriptor }

list_of_path_outputs ::=
specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

A.7.3 Specify block terminals
specify_input_terminal_descriptor ::=

input_identifier
| input_identifier [constant_expression]
| input_identifier [range_expression]

specify_output_terminal_descriptor ::=
output_identifier

| output_identifier [constant_expression]
| output_identifier [range_expression]

input_identifier ::= input_port_identifier | inout_port_identifier

output_identifier ::= output_port_identifier | inout_port_identifier

A.7.4 Specify path delays
path_delay_value ::=

list_of_path_delay_expressions
| (list_of_path_delay_expressions)

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

108 Copyright 2002 Accellera. All rights reserved.

list_of_path_delay_expressions ::=
t_path_delay_expression

| trise_path_delay_expression , tfall_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,

tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,

tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression
t0x_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_expression ,
tx0_path_delay_expression , txz_path_delay_expression , tzx_path_delay_expression

t_path_delay_expression ::= path_delay_expression

trise_path_delay_expression ::= path_delay_expression

tfall_path_delay_expression ::= path_delay_expression

tz_path_delay_expression ::= path_delay_expression

t01_path_delay_expression ::= path_delay_expression

t10_path_delay_expression ::= path_delay_expression

t0z_path_delay_expression ::= path_delay_expression

tz1_path_delay_expression ::= path_delay_expression

t1z_path_delay_expression ::= path_delay_expression

tz0_path_delay_expression ::= path_delay_expression

t0x_path_delay_expression ::= path_delay_expression

tx1_path_delay_expression ::= path_delay_expression

t1x_path_delay_expression ::= path_delay_expression

tx0_path_delay_expression ::= path_delay_expression

txz_path_delay_expression ::= path_delay_expression

tzx_path_delay_expression ::= path_delay_expression

path_delay_expression ::= constant_mintypmax_expression

edge_sensitive_path_declaration ::=
parallel_edge_sensitive_path_description = path_delay_value

| full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=
([edge_identifier] specify_input_terminal_descriptor =>

specify_output_terminal_descriptor [polarity_operator] : data_source_expression)

full_edge_sensitive_path_description ::=
([edge_identifier] list_of_path_inputs *>

list_of_path_outputs [polarity_operator] : data_source_expression)

data_source_expression ::= expression

edge_identifier ::= posedge | negedge

state_dependent_path_declaration ::=
if (module_path_expression) simple_path_declaration

| if (module_path_expression) edge_sensitive_path_declaration
| ifnone simple_path_declaration

polarity_operator ::= + | -

A.7.5 System timing checks

A.7.5.1 System timing check commands

system_timing_check ::=

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 109

$setup_timing_check
| $hold_timing_check
| $setuphold_timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check

$setup_timing_check ::=
$setup (data_event , reference_event , timing_check_limit [, [notify_reg]]) ;

$hold_timing_check ::=
$hold (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$setuphold_timing_check ::=
$setuphold (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [stamptime_condition] [, [checktime_condition]
[, [delayed_reference] [, [delayed_data]]]]]]) ;

$recovery_timing_check ::=
$recovery (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$removal_timing_check ::=
$removal (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$recrem_timing_check ::=
$recrem (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [stamptime_condition] [, [checktime_condition]
[, [delayed_reference] [, [delayed_data]]]]]]) ;

$skew_timing_check ::=
$skew (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$timeskew_timing_check ::=
$timeskew (reference_event , data_event , timing_check_limit

[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;

$fullskew_timing_check ::=
$fullskew (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;

$period_timing_check ::=
$period (controlled_reference_event , timing_check_limit [, [notify_reg]]) ;

$width_timing_check ::=
$width (controlled_reference_event , timing_check_limit , threshold [, [notify_reg]]) ;

$nochange_timing_check ::=
$nochange (reference_event , data_event , start_edge_offset ,

end_edge_offset [, [notify_reg]]) ;

A.7.5.2 System timing check command arguments

checktime_condition ::= mintypmax_expression

controlled_reference_event ::= controlled_timing_check_event

data_event ::= timing_check_event

delayed_data ::=
terminal_identifier

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

110 Copyright 2002 Accellera. All rights reserved.

| terminal_identifier [constant_mintypmax_expression]

delayed_reference ::=
terminal_identifier

| terminal_identifier [constant_mintypmax_expression]

end_edge_offset ::= mintypmax_expression

event_based_flag ::= constant_expression

notify_reg ::= variable_identifier

reference_event ::= timing_check_event

remain_active_flag ::= constant_mintypmax_expression

stamptime_condition ::= mintypmax_expression

start_edge_offset ::= mintypmax_expression

threshold ::=constant_expression

timing_check_limit ::= expression

A.7.5.3 System timing check event definitions

timing_check_event ::=
[timing_check_event_control] specify_terminal_descriptor [&&& timing_check_condition]

controlled_timing_check_event ::=
timing_check_event_control specify_terminal_descriptor [&&& timing_check_condition]

timing_check_event_control ::=
posedge

| negedge
| edge_control_specifier

specify_terminal_descriptor ::=
specify_input_terminal_descriptor

| specify_output_terminal_descriptor

edge_control_specifier ::= edge [edge_descriptor [, edge_descriptor]]

edge_descriptor1 ::= 01 | 10 | z_or_x zero_or_one | zero_or_one z_or_x

zero_or_one ::= 0 | 1

z_or_x ::= x | X | z | Z

timing_check_condition ::=
scalar_timing_check_condition

| (scalar_timing_check_condition)

scalar_timing_check_condition ::=
expression

| ~ expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant

scalar_constant ::= 1’b0 | 1’b1 | 1’B0 | 1’B1 | ’b0 | ’b1 | ’B0 | ’B1 | 1 | 0

A.8 Expressions

A.8.1 Concatenations
concatenation ::= { expression { , expression } }

constant_concatenation ::= { constant_expression { , constant_expression } }

constant_multiple_concatenation ::= { constant_expression constant_concatenation }

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 111

module_path_concatenation ::= { module_path_expression { , module_path_expression } }

module_path_multiple_concatenation ::= { constant_expression module_path_concatenation }

multiple_concatenation ::= { constant_expression concatenation }

net_concatenation ::= { net_concatenation_value { , net_concatenation_value } }

net_concatenation_value ::=
hierarchical_net_identifier

| hierarchical_net_identifier [expression] { [expression] }
| hierarchical_net_identifier [expression] { [expression] } [range_expression]
| hierarchical_net_identifier [range_expression]
| net_concatenation

variable_concatenation ::= { variable_concatenation_value { , variable_concatenation_value } }

variable_concatenation_value ::=
hierarchical_variable_identifier

| hierarchical_variable_identifier [expression] { [expression] }
| hierarchical_variable_identifier [expression] { [expression] } [range_expression]
| hierarchical_variable_identifier [range_expression]
| variable_concatenation

A.8.2 Function calls
constant_function_call ::= function_identifier { attribute_instance }

(constant_expression { , constant_expression })

function_call ::= hierarchical_function_identifier{ attribute_instance } (expression { , expression })

genvar_function_call ::= genvar_function_identifier { attribute_instance }
(constant_expression { , constant_expression })

system_function_call ::= system_function_identifier [(expression { , expression })]

A.8.3 Expressions
base_expression ::= expression

inc_or_dec_expression ::=
inc_or_dec_operator variable_lvalue

| variable_lvalue inc_or_dec_operator

conditional_expression ::= expression1 ? { attribute_instance } expression2 : expression3

constant_base_expression ::= constant_expression

constant_expression ::=
constant_primary

| unary_operator { attribute_instance } constant_primary
| constant_expression binary_operator { attribute_instance } constant_expression
| constant_expression ? { attribute_instance } constant_expression : constant_expression
| string

constant_mintypmax_expression ::=
constant_expression

| constant_expression : constant_expression : constant_expression

constant_param_expression ::=
constant_expression

| data_type

constant_range_expression ::=
constant_expression

| msb_constant_expression : lsb_constant_expression
| constant_base_expression +: width_constant_expression
| constant_base_expression -: width_constant_expression

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

112 Copyright 2002 Accellera. All rights reserved.

dimension_constant_expression ::= constant_expression

expression1 ::= expression

expression2 ::= expression

expression3 ::= expression

expression ::=
primary

| unary_operator { attribute_instance } primary
| { attribute_instance } inc_or_dec_expression
| (operator_assignment)
| expression binary_operator { attribute_instance } expression
| conditional_expression
| string

lsb_constant_expression ::= constant_expression

mintypmax_expression ::=
expression

| expression : expression : expression

module_path_conditional_expression ::= module_path_expression ? { attribute_instance }
module_path_expression : module_path_expression

module_path_expression ::=
module_path_primary

| unary_module_path_operator { attribute_instance } module_path_primary
| module_path_expression binary_module_path_operator { attribute_instance }

module_path_expression
| module_path_conditional_expression

module_path_mintypmax_expression ::=
module_path_expression

| module_path_expression : module_path_expression : module_path_expression

msb_constant_expression ::= constant_expression

range_expression ::=
expression

| msb_constant_expression : lsb_constant_expression
| base_expression +: width_constant_expression
| base_expression -: width_constant_expression

width_constant_expression ::= constant_expression

A.8.4 Primaries
constant_primary ::=

constant_concatenation
| constant_function_call
| (constant_mintypmax_expression)
| constant_multiple_concatenation
| genvar_identifier
| number
| parameter_identifier
| specparam_identifier
| time_literal
| ’0 | ’1 | ’z | ’Z | ’x | ’X

module_path_primary ::=
number

| identifier
| module_path_concatenation

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 113

| module_path_multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| (module_path_mintypmax_expression)

primary ::=
number

| hierarchical_identifier
| hierarchical_identifier [expression] { [expression] }
| hierarchical_identifier [expression] { [expression] } [range_expression]
| hierarchical_identifier [range_expression]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| (mintypmax_expression)
| { expression { , expression } }
| { expression { expression } }
| simple_type_or_number ’ (expression)
| simple_type_or_number ’ { expression { , expression } }
| simple_type_or_number ’ { expression { expression } }
| time_literal
| ’0 | ’1 | ’z | ’Z | ’x | ’X

time_literal ::=
unsigned_number time_unit

| fixed_point_number time_unit

time_unit ::= s | ms | us | ns | ps | fs

A.8.5 Expression left-side values
net_lvalue ::=

hierarchical_net_identifier
| hierarchical_net_identifier [constant_expression] { [constant_expression] }
| hierarchical_net_identifier [constant_expression] { [constant_expression] }

[constant_range_expression]
| hierarchical_net_identifier [constant_range_expression]
| hierarchical_net_identifier ([constant_expression { , constant_expression }])
| net_concatenation

variable_lvalue ::=
variable_lvalue_item [inc_or_dec_operator]

| hierarchical_variable_identifier ([constant_expression { , constant_expression }])

variable_lvalue_item ::=
hierarchical_variable_identifier

| hierarchical_variable_identifier [expression] { [expression] }
| hierarchical_variable_identifier [expression] { [expression] } [range_expression]
| hierarchical_variable_identifier [range_expression]
| variable_concatenation

A.8.6 Operators
unary_operator ::=

+ | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_operator ::=
+ | - | * | / | % | == | != | === | !== | && | || | **

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

114 Copyright 2002 Accellera. All rights reserved.

| < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | << | >>> | <<<

inc_or_dec_operator ::= ++ | --

unary_module_path_operator ::=

 ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_module_path_operator ::=

 == | != | && | || | & | | | ^ | ^~ | ~^

A.8.7 Numbers
number ::=

decimal_number
| octal_number
| binary_number
| hex_number
| real_number

decimal_number ::=
unsigned_number

| [size] decimal_base unsigned_number
| [size] decimal_base x_digit { _ }
| [size] decimal_base z_digit { _ }

binary_number ::= [size] binary_base binary_value

octal_number ::= [size] octal_base octal_value

hex_number ::= [size] hex_base hex_value

sign ::= + | -

size ::= non_zero_unsigned_number

non_zero_unsigned_number1 ::= non_zero_decimal_digit { _ | decimal_digit}

real_number1 ::=
fixed_point_number

| unsigned_number [. unsigned_number] exp [sign] unsigned_number

fixed_point_number1 ::= unsigned_number . unsigned_number

exp ::= e | E

unsigned_number1 ::= decimal_digit { _ | decimal_digit }

binary_value1 ::= binary_digit { _ | binary_digit }

octal_value1 ::= octal_digit { _ | octal_digit }

hex_value1 ::= hex_digit { _ | hex_digit }

decimal_base1 ::= ’[s|S]d | ’[s|S]D

binary_base1 ::= ’[s|S]b | ’[s|S]B

octal_base1 ::= ’[s|S]o | ’[s|S]O

hex_base1 ::= ’[s|S]h | ’[s|S]H

non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

binary_digit ::= x_digit | z_digit | 0 | 1

octal_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

hex_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f | A | B | C | D | E | F

x_digit ::= x | X

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 115

z_digit ::= z | Z | ?

A.8.8 Strings
string ::= " { Any_ASCII_Characters_except_new_line } "

A.9 General

A.9.1 Attributes
attribute_instance ::= (* attr_spec { , attr_spec } *)

attr_spec ::=
attr_name = constant_expression

| attr_name

attr_name ::= identifier

A.9.2 Comments
comment ::=

one_line_comment
| block_comment

one_line_comment ::= // comment_text \n

block_comment ::= /* comment_text */

comment_text ::= { Any_ASCII_character }

A.9.3 Identifiers
arrayed_identifier ::=

simple_arrayed_identifier
| escaped_arrayed_identifier

block_identifier ::= identifier

cell_identifier ::= identifier

config_identifier ::= identifier

const_identifier ::= identifier

enum_identifier ::= identifier

escaped_arrayed_identifier ::= escaped_identifier [range]

escaped_hierarchical_identifier4 ::=
escaped_hierarchical_branch { .simple_hierarchical_branch | .escaped_hierarchical_branch }

escaped_identifier ::= \ {any_ASCII_character_except_white_space} white_space

event_identifier ::= identifier

function_identifier ::= identifier

gate_instance_identifier ::= arrayed_identifier

generate_block_identifier ::= identifier

genvar_function_identifier ::= identifier8

genvar_identifier ::= identifier

hierarchical_block_identifier ::= hierarchical_identifier

hierarchical_event_identifier ::= hierarchical_identifier

hierarchical_function_identifier ::= hierarchical_identifier

hierarchical_identifier ::=
simple_hierarchical_identifier

| escaped_hierarchical_identifier

hierarchical_net_identifier ::= hierarchical_identifier

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

116 Copyright 2002 Accellera. All rights reserved.

hierarchical_variable_identifier ::= hierarchical_identifier

hierarchical_task_identifier ::= hierarchical_identifier

identifier ::=
simple_identifier

| escaped_identifier

interface_identifier ::= identifier

inout_port_identifier ::= identifier

input_port_identifier ::= identifier

instance_identifier ::= identifier

library_identifier ::= identifier

memory_identifier ::= identifier

modport_identifier ::= identifier

module_identifier ::= identifier

module_instance_identifier ::= arrayed_identifier

net_identifier ::= identifier

output_port_identifier ::= identifier

parameter_identifier ::= identifier

port_identifier ::= identifier

real_identifier ::= identifier

simple_arrayed_identifier ::= simple_identifier [range]

simple_hierarchical_identifier3 ::= simple_hierarchical_branch [.escaped_identifier]

simple_identifier2 ::= [a-zA-Z_] { [a-zA-Z0-9_$] }

specparam_identifier ::= identifier

state_identifier ::= identifier

system_function_identifier5 ::= $[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }

system_task_identifier5 ::= $[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }

task_or_function_identifier ::= task_identifier | function_identifier

task_identifier ::= identifier

terminal_identifier ::= identifier

text_macro_identifier ::= simple_identifier

topmodule_identifier ::= identifier

type_declaration_identifier ::= type_identifier { packed_dimension }

type_identifier ::= identifier

udp_identifier ::= identifier

udp_instance_identifier ::= arrayed_identifier

variable_decl_assign_identifier ::= variable_identifier { unpacked_dimension } [= constant_expression]

variable_declaration_identifier ::= variable_identifier { unpacked_dimension }

variable_identifier ::= identifier

A.9.4 Identifier branches

simple_hierarchical_branch3 ::=
simple_identifier { [unsigned_number] } [{ . simple_identifier { [unsigned_number] } }]

escaped_hierarchical_branch4 ::=
escaped_identifier { [unsigned_number] } [{ . escaped_identifier { [unsigned_number] } }]

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 117

A.9.5 White space

white_space ::= space | tab | newline | eof6

NOTES

1) Embedded spaces are illegal.

2) A simple_identifier and arrayed_reference shall start with an alpha or underscore (_) character, shall
have at least one character, and shall not have any spaces.

3) The period (.) in simple_hierarchical_identifier and simple_hierarchical_branch shall not be preceded
or followed by white_space.

4) The period in escaped_hierarchical_identifier and escaped_hierarchical_branch shall be preceded by
white_space, but shall not be followed by white_space.

5) The $ character in a system_function_identifier or system_task_identifier shall not be followed by
white_space. A system_function_identifier or system_task_identifier shall not be escaped.

6) End of file.

7) Must be a void function

8) Hierarchy is not allowed

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

118 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 119

Annex B
Keywords

SystemVerilog reserves the following keywords:

† keywords not in the IEEE 1364 Verilog-2001 standard

always
always_comb†
always_ff†

always_latch†

and
assert†

assert_strobe†

assign
automatic
begin
bit†

break†

buf
bufif0
bufif1
byte†

case
casex
casez
cell
changed†

char†

cmos
config
const†

continue†

deassign
default
defparam
design
disable
do†

else
end
endcase
endconfig
endfunction
endgenerate
endinterface†

endmodule
endprimitive
endspecify

endtable
endtask
endtransition†

enum†

event
export†

extern†

for
force
forever
fork
forkjoin†

function
generate
genvar
highz0
highz1
if
iff†

ifnone
import†

incdir
include
initial
inout
input
instance
int†

integer
interface†

join
large
liblist
library
localparam
logic†

longint†

longreal†

macromodule
medium
modport†

module

nand
negedge
nmos
nor
noshowcancelled
not
notif0
notif1
or
output
packed†

parameter
pmos
posedge
primitive
process†

priority†

pull0
pull1
pulldown
pullup
pulsestyle_oneven
t
pulsestyle_ondete
ct
rcmos
real
realtime
reg
release
repeat
return
rnmos
rpmos
rtran
rtranif0
rtranif1
scalared
shortint†

shortreal†

showcancelled
signed

small
specify
specparam
static†

strong0
strong1
struct†

supply0
supply1
table
task
time
timeprecision†

timeunit†

tran
tranif0
tranif1
transition†

tri
tri0
tri1
triand
trior
trireg
type†

typedef†

union†

unique†

unsigned
use
vectored
void†

wait
wand
weak0
weak1
while
wire
wor
xnor
xor

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

120 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 121

Annex C
Glossary

(Informative)

Assertion — An assertion is a statement that a certain property must be true. For example, that a read_request
must always be followed by a read_grant within 2 clock cycles. Assertions allow for automated checking that
the specified property is true, and can generate automatic error messages if the property is not true. SystemVer-
ilog provides special assertion constructs, which are discussed in Section 11.

Elaboration — Elaboration is the process of binding together the components that make up a design. These
components can include module instances, primitive instances, interfaces, and the top-level of the design hier-
archy. SystemVerilog requires a specific order of elaboration, which is presented in Section 12.2.

Enumerated type — Enumerated data types provide the capability to declare a variable which can have one
of a set of named values. The numerical equivalents of these values may be specified. Enumerated types can be
easily referenced or displayed using the enumerated names, as opposed to the enumerated values. Section 3.6
discusses enumerated types.

Interface — An interface encapsulates the communication between blocks of a design, allowing a smooth
migration from abstract system-level design through successive refinement down to lower-level register-trans-
fer and structural views of the design. By encapsulating the communication between blocks, the interface con-
struct also facilitates design re-use. The inclusion of interface capabilities is one of the major advantages of
SystemVerilog. Interfaces are covered in Section 13.

LRM — LRM is an abbreviation for Language Reference Manual. “SystemVerilog LRM” refers to this docu-
ment. “Verilog LRM” refers to the IEEE manual “1364-2001 IEEE Standard for Verilog Hardware Description
Language 2001”. See Annex D for information about this manual.

Packed array — Packed array refers to an array where the dimensions are declared before an object name.
Packed arrays can have any number of dimensions. A one-dimensional packed array is the same as a vector
width declaration in Verilog. Packed arrays provide a mechanism for subdividing a vector into subfields,
which can be conveniently accessed as array elements. A packed array differs from an unpacked array, in that
the whole array is treated as a single vector for arithmetic operations. Packed arrays are discussed in detail in
Section 4.

Process — A process is a thread of one or more programming statements which can be executed indepen-
dently of other programming statements. Each initial procedure, always procedure and continuous assignment
statement in Verilog is a separate process. These are static processes. That is, each time the process starts run-
ning, there is an end to the process. SystemVerilog adds specialized always procedures, which are also static
processes, and dynamic processes, introduced by the process keyword. When dynamic processes are started,
they can run without ending. Processes are presented in Section 9.

SystemVerilog — SystemVerilog refers to the Accellera standard for a set of abstract modeling and verifica-
tion extensions to the IEEE 1364-2001 Verilog standard. The many features of the SystemVerilog standard are
presented in this document.

Unpacked array — Unpacked array refers to an array where the dimensions are declared after an object
name. Unpacked arrays are the same as arrays in Verilog, and can have any number of dimensions. An
unpacked array differs from a packed array, in that the whole array cannot be used for arithmetic operations.
Each element must be treated separately. Unpacked arrays are discussed in Section 4.

Verilog — Verilog refers to the IEEE 1364-2001 Verilog Hardware Description Language (HDL), commonly
called Verilog-2001. This language is documented in the IEEE manual “1364-2001 IEEE Standard for Verilog
Hardware Description Language 2001”. See Annex D for information about this manual.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

122 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 123

Annex D
Bibliography

(Informative)

[B1] IEEE Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic 1985. ISBN 1-5593-7653-8.
IEEE Product No. SH10116-TBR.

[B2] IEEE Std. 1364-1995, IEEE Standard Hardware Description Language Based on the Verilog¨ Hardware
Description Language 1995. ISBN 0-7381-3065-6. IEEE Product No. WE94418-TBR.

[B3] IEEE Std. 1364-2001, IEEE Standard for Verilog Hardware Description Language 2001. ISBN 0-7381-
2827-9. IEEE Product No. SH94921-TBR.

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

124 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 125

Index

Symbols
$assertkill 86
$assertoff 86
$asserton 86
$bits 12, 84
$dimensions 17, 85
$error 44, 85
$fatal 44, 85
$high 17, 84
$increment 17, 85
$info 44, 85
$inset 87
$insetz 87
$isunknown 87
$left 17, 84
$length 17, 85
$low 17, 84
$onehot 87
$onehot0 87
$right 17, 84
$root 51–52
$warning 44, 85
%= operator 22
&= operator 22
’ cast operator 12
*= operator 22–23
++ operator 22
+= operator 22–23
.* port connections 60
.name port connections 59
/= operator 22–23
<<<= operator 22
<<= operator 22
-- operator 22
-= operator 22–23
>>= operator 22
>>>= operator 22
@@ step control 47
\ line continuation 88
\a bell 3
\f form feed 3
\v vertical tab 3
\x02 hex number 3
^= operator 22
‘ " isolated quote 88
‘ ‘ double back tick 88
‘define 88
‘timescale 7, 57
|= operator 22

Numerics
2-state types 6
4-state types 6

A
always @* 33
always_comb 33
always_ff 34
always_latch 33–34
array literals 3
array part selects 16
array querying functions 17, 84
array slices 16
arrays 14
assert 44
assert_strobe 45
assertion expression sequence 49
assertion system functions 86
assertion system tasks 85–86
assertions 42–50, 121
assign 20, 25, 32, 89
assignment operators 22
assignments in expressions 22
attributes 21
automatic 18–20, 36
automatic tasks 38

B
bell 3
bit 5–7
block name 30
blocking assignments 26
break 25, 29–30
byte 6–7

C
casting 12
changed 32
char 6–7
clocked immediate assertions 47
combinational logic 33
concatenation 24
configurations 83
const 18
constants 18
continue 25, 29–30
continuous assignment 34

D
data declarations 18
data types 5
deassign 25, 32, 89
decrementor operator 22
defparam 81, 89
disable 30

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

126 Copyright 2002 Accellera. All rights reserved.

do...while loop 25, 28
double 7
dynamic processes 33–34

E
elaboration 18–19, 51, 121
enum 9
enumerated types 8–9, 121
export 73
extern 73, 77

F
float 7
force 20, 25
forkjoin 64, 73, 77
form feed 3
functions 39
functions in interfaces 73

G
goto 29

H
hierarchical names 63

I
iff 32
immediate assertions 44
implicit port connections 61
import 73
incrementor operator 22
int 5–7
integer 6–7
integer literals 3
interface 21, 64–79, 121
introduction to SystemVerilog 1

L
labels 30
latched logic 34
libraries 83
library map files 83
literal values 2
localparam 81
logic 5–7, 20
longint 5–7
LRM 121

M
modport 64, 69
module instantiation 58–60
multiple dimension arrays 15

N
name space 63
named blocks 29

named port connections 59
nested identifiers 63
nested modules 54
nonblocking assignments 26

O
operator associativity 23
operator precedence 23
overview of SystemVerilog 1

P
packed arrays 14–15, 23, 121
parameter 81
parameter type 81
part selects 16
port connections, .* 60
port connections, .name 59
port connections, implicit 61
port declarations 56, 62
precedence 23
priority 27–28
process 30, 33–34, 121
process execution threads 35

R
real 3, 5, 7, 23
real literals 3
reg 5–7
release 25
return 25, 29, 31, 38, 40

S
sequential assertions 46
sequential logic 34
sequential regular expression 46
shortint 6–7
shortreal 3, 5, 7, 23
signed types 7
slices 16
specparam 81
statement labels 29
static 18–20, 36
static processes 30, 33
static tasks 38
step control 47
string literals 3
strobed assertions 45
struct 10
structure literals 4
structures 10
SystemVerilog, overview 1
SystemVerilog,version numbers 1

T
tasks 37

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0

Copyright 2002 Accellera. All rights reserved. 127

tasks in interfaces 73
threads 35
time literals 3
time unit 3
timeprecision 7, 57
timeunit 7, 56
top level 51
type 81
typedef 5, 8

U
union 10
unions 10
unique 27–28
unpacked arrays 14–15, 121
unsigned types 7
unsized literals 3
user-defined types 8

V
variable initialization 19
vertical tab 3
void 7
void functions 36, 40

W
while 25, 28

Accellera
SystemVerilog 3.0 Extensions to Verilog-2001

128 Copyright 2002 Accellera. All rights reserved.

