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ABSTRACT 

 

SystemVerilog Assertions (SVA) can be used to implement relatively complex functional 

coverage models under appropriate circumstances. This paper explores the issues and 

implementation of such a functional coverage model to demonstrate both the capabilities of 

SVA coverage and illustrate coding techniques which can also be applied to the more typical 

use of SVA coverage, which is to specify key corner cases for the RTL from the designer’s 

detailed knowledge of the structural implementation. This paper is related to previous work 

published at SNUG Europe 2005 called Utilizing Vera Functional Coverage in the 

Verification of a Protocol Engine for the FlexRay
TM
 Automotive Communication System [1]; 

readers are encouraged to read both papers.  
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1 Introduction 

Most testbench environments that make use of Assertion Based Verification (ABV) 

methodologies would typically consider the following aspects of functional coverage: 

 

• High-level functional coverage  

o based on specified features - the requirements for the design 

o implemented by verification engineer 

o implemented in a HLVL like Vera, 'e' or SystemVerilog 

 

• Low-level implementation specific coverage points in RTL 

o capture the designers concept of critical corner cases for verification 

o really the designers requirements from the verification environment 

o implemented by design engineer 

o implemented in SVA 

 

Refer to Chapter 5 of Assertion Based Design book [2] for a discussion on the merits of 

implementing low-level coverage using assertions, and how the two styles complement one 

another. The SNUG Europe 2005 paper [1] presents a third alternative level of abstraction. In 

this case the FlexRay Protocol Specification [3] is defined at a micro-architectural level using 

Graphical Specification and Description Language (SDL), which enables a functional 

coverage model to be generated for the specified requirements of the RTL. It is important to 

note the distinction here: these are the specification requirements that are being captured in 

the functional coverage model and not the implementation corner cases. One possibility, 

presented in this paper, is implementing the functional coverage model using SystemVerilog 

Assertions (SVA) [4].  

 

With reference to [1], the following features are required for the functional coverage model 

irrespective of whether it is implemented in SVA or an HLVL such as Vera: 

 

• following types of coverage points are required 

o state 

o state transitions 

o conditional state transitions 

o state transition sequences 

o SDL trigger coverage 

• check for illegal states and transitions relative to the specification 

• coverage model should not be implementation dependant 

• coding style should closely reflect the SDL, for maintenance and debugging 

• ability to query coverage results from the testbench environment for closed loop 

constrained random stimulus generation or functional checks for directed tests 

  

A full discussion on the role of functional coverage in the overall testbench architecture, and 

an analysis of the requirements for the FlexRay Protocol Engine SDL coverage, is presented 

in [1]. The remainder of this paper is focused on how such a coverage model can be 

implemented using SVA. 
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2 Definition of Coverage Points in SVA 

2.1 State Definitions 

Text macros can be used to define the state encoding, using wildcard equivalence operators if 

required, as shown in Figure 1. Alternative solutions using text macros for just the binary 

state values or using enumerated types are also possible; however subsequent sections will 

demonstrate that the proposed style gives a tidy overall result. 

 

`define DEFAULT_CONFIG              (vState =?= 7'b000_xxxx) 

`define CONFIG                      (vState =?= 7'b001_xxxx) 

`define READY                       (vState =?= 7'b011_xxxx) 

`define WAKEUP_LISTEN               (vState =?= 7'b010_xx01) 

`define WAKEUP_SEND                 (vState =?= 7'b010_xx11) 

`define WAKEUP_DETECT               (vState =?= 7'b010_xx10) 

`define COLDSTART_LISTEN            (vState =?= 7'b111_0011) 

`define COLDSTART_CONSISTENCY_CHECK (vState =?= 7'b111_1010) 

`define INTEGRATION_LISTEN          (vState =?= 7'b111_0101) 

// etc 

Figure 1: State Definitions 

2.2 State Transition Sequence Definition 

The full set of legal state transitions can be defined using SVA sequence statements, some 

examples of which are shown in Figure 2. Note that since the ended method is subsequently 

used on instances of these sequences, the clock cannot be derived from the context and must 

be defined in the sequence declaration. 

 

sequence seq_DC_C; 

  @(posedge clk) 

    `DEFAULT_CONFIG ##1  

    `CONFIG; 

endsequence : seq_DC_C 

 

sequence seq_CCC_IL; 

  @(posedge clk) 

    `COLDSTART_CONSISTENCY_CHECK ##1  

    `INTEGRATION_LISTEN; 

endsequence : seq_CCC_IL 

 

// etc 

Figure 2: State Transition Sequence Definition 

2.3 Multiple State Transition Sequence Definition 

Multiple state transitions sequences are used in this application as a means of monitoring and 

checking higher-level protocol operation. The transitions can also be defined using SVA 

sequence definitions, as shown in Figure 3. The [*1:$] syntax in Figure 3 means that state 

to the left must persist for one or more clocks before the next state in the sequence is attained. 
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sequence seq_POC_CSA_CSI; 

  @(posedge clk) 

    `READY                              ##1  

    `COLDSTART_LISTEN            [*1:$] ##1  

    `INITIALIZE_SCHEDULE         [*1:$] ##1  

    `INTEGRATION_COLDSTART_CHECK [*1:$] ##1  

    `COLDSTART_JOIN              [*1:$] ##1  

    `NORMAL_ACTIVE               ; 

endsequence : seq_POC_CSA_CSI 

// etc 

Figure 3: Multiple State Transition Sequence Definition 

2.4 State Coverage 

This is concerned with measuring whether we reached all the states in the specification. Note 

that this is not the same as code coverage measuring whether or not we acquired all the states 

in the implementation, since the implementation may have accidentally omitted states (or 

state transitions). One possible implementation is shown in Figure 4.  

 

state_DC  : cover property ( @(posedge clk) `DEFAULT_CONFIG); 

state_CCC : cover property ( @(posedge clk) `COLDSTART_CONSISTENCY_CHECK); 

// etc 

Figure 4: State Coverage 

2.5 State Transition Coverage 

In order to determine if we achieved all possible legal state transitions, each of the previously 

defined sequences can be covered as shown in Figure 5. Other implementations are possible, 

for example using the ended method, but for simple sequences like these the coverage 

results are the same.  

 

trans_DC_C : cover property ( seq_DC_C ); 

trans_C_R  : cover property ( seq_C_R ); 

trans_R_C  : cover property ( seq_R_C ); 

trans_R_WL : cover property ( seq_CCC_IL ); 

// etc 

Figure 5: State Transition Coverage 

2.6 Multiple State Transition Coverage 

Coverage for multiple state transitions is handled in the same way as single state transitions, 

an example of which is shown in Figure 6.  

 

trans_POC_CSA_CSI : cover property ( seq_POC_CSA_CSI ); 

// etc 

Figure 6: Multiple State Transition Coverage 

2.7 Conditional State Transition Coverage 

One of the main functional coverage goals in [1] is to measure the conditional path transitions 

between the states for the Protocol Operation Controller (POC). In SDL diagrams of [3] there 

are multiple possible paths between some adjacent states which are conditional on the value 
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of protocol variables. Measuring conditional state transitions can be achieved in SVA by 

evaluating the conditional expression when the corresponding state transition sequence has 

ended, as shown in Figure 7. The cover statement names in Figure 7 and Figure 8 relate 

directly to specification tags in the SDL as detailed in [1].  

 

F07_13_007_IL : cover property ( @(posedge clk)  

                seq_CCC_IL.ended                     &&  

                (zStartupNodes <= 0)                 &&  

                (vCycleCounter[0] === 1)             ); 

 

F07_13_009_IL : cover property ( @(posedge clk)  

                seq_CCC_IL.ended                     &&  

                (zSyncCalcResult !== `WITHIN_BOUNDS) &&  

                (zStartupNodes > 0)                  &&  

                (vCycleCounter[0] === 1)             ); 

 

F07_13_011_IL : cover property ( @(posedge clk)  

                seq_CCC_IL.ended                     &&  

                (vRemainingColdstartAttempts <= 0)   &&  

                (zStartupNodes === 0)                &&  

                (vCycleCounter[0] === 0)             ); 

 

//etc 

Figure 7: Conditional State Transition Coverage 

2.8 SDL Trigger Event Coverage 

Another important functional coverage requirement detailed in [1] is measuring the SDL 

trigger event coverage. Trigger events in the SDL can result in the POC changing state, but 

the trigger event will have expired before a real RTL implementation actually achieves the 

new state. Some of these trigger events do not cause a state change, but instead have a 

secondary effect, such as modifying a protocol variable. From a functional coverage point of 

view, we care about measuring the occurrence of all relevant triggers in the corresponding 

states. This can be achieved in SVA by using the $rose() system function for the trigger 

signal when we are in the appropriate state, as shown in Figure 8. 

 

F07_11_003_A : cover property ( @(posedge clk)  

               `COLDSTART_LISTEN && $rose(header_received_on_A)); 

 

F07_11_004_B : cover property ( @(posedge clk)  

               `COLDSTART_LISTEN && $rose(symbol_decoded_on_B)); 

 

F07_11_005   : cover property ( @(posedge clk)  

               `COLDSTART_LISTEN && $rose(CHIRP_on_A)); 

// etc 

Figure 8: SDL Trigger Event Coverage 

2.9 Detecting Illegal States and Transitions 

A side effect of implementing functional coverage in [1] using Vera was that specification of 

illegal state and transition bins came almost for free (using the bad_state and 

bad_trans bin types). Implementation of this checking capability in SVA involves a little 

more effort as shown in Figure 9 and Figure 10. Some would question whether such a 

checking operation is really the responsibility of a functional coverage monitor, but for 

reasonably complex coverage models such as this the checking capability provides additional 
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validation of the coverage statements completeness. In particular if valid state transitions are 

accidentally omitted by the coverage model, but included in the design, then the defect 

should manifest itself as a runtime assertion failure. 

 

property prop_LEGAL_STATE; 

  @(posedge clk) 

    (`DEFAULT_CONFIG || 

     `CONFIG         || 

     `READY          || 

      // etc 

     `NORMAL_PASSIVE || 

     `HALT); 

endproperty : prop_LEGAL_STATE 

 

assert_LEGAL_STATE : assert property (prop_LEGAL_STATE) 

  else $error("%m: illegal state"); 

Figure 9: Legal State Property Declaration and Assertion 

 

The coding for the legal states in Figure 9 simply states that the state variable must have a 

legal code (allowing for the wildcard definitions) at all times, otherwise the assertion fails 

and generates a simulation error.  

 

property prop_LEGAL_TRANS; 

  @(posedge clk) 

    disable iff (rst) 

      (!$stable(vState) |-> (seq_DC_C.ended   || 

                             seq_C_R.ended    || 

                             seq_R_C.ended    || 

                             seq_R_WL.ended   || 

                             // etc 

                             seq_CCC_IL.ended || 

                             seq_CJ_NA.ended  )); 

endproperty : prop_LEGAL_TRANS 

 

assert_LEGAL_TRANS : assert property (prop_LEGAL_TRANS) 

  else $error("%m: illegal transition"); 

Figure 10: Legal Transition Property Declaration and Assertion 

 

The syntax for prop_LEGAL_TRANS in Figure 10 means: if vState changed (i.e. is not stable) 

that implies that on the same clock edge at least one of the valid state transition sequences 

must have ended. The list includes all the basic state transitions sequences but does not need 

the multiple state transition sequences. Note that in this case it is appropriate to use the 

disable iff construct to handle reset operation.  
 

3 Implementation of Coverage Infrastructure 

The SVA coverage model is defined as a SystemVerilog module and can either be 

instantiated directly in the RTL, or more normally externally bound to an instance of the RTL 

using the SystemVerilog bind statement. The module port list comprises of all the signals 

and variables that are required to perform the coverage; an excerpt from the module header is 

shown in Figure 11. 
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module FRPocCovMon_sva  

  ( input       clk 

  , input       rst 

  , input [6:0] vState 

  // 8 cluster and node configuration parameters 

  , input       pWakeupChannel  

  // ... 

  // 7 protocol variables 

  , input [4:0] vRemainingColdstartAttempts 

  // ... 

  // 10 process variables 

  , input [1:0] zSyncCalcResult 

  // ... 

  // 36 trigger signals 

  , header_received_on_A 

  // ... 

  ); 

 

  // 18 state definitions + coverage 

  // 90 state transition sequence definitions + coverage 

  // 20 multiple state transition sequence definitions + coverage 

  // 70 conditional state transition coverage 

  // 220 SDL trigger coverage 

 

endmodule : FRPocCovMon_sva 

Figure 11: SVA Coverage Module 

 

The bind statement is usually contained in a separate file or as part of the top-level 

testbench environment and it is implementation specific. If certain protocol variables are 

inaccessible in a particular implementation, for example because they are stored in RAM, 

then the corresponding port on the module can have a void binding (i.e. it is unconnected) as 

shown for vRemainingColdstartAttempts in Figure 12. Void bindings for coverage monitor 

ports result in lower coverage results since it is not possible to determine if the corresponding 

conditional state transition path was exercised. 

 

bind tb.pe.poc 

  FRPocCovMon_sva 

    FRPocCovMon_sva_i 

      ( .clk                         (clk) 

      , .rst                         (rst) 

      , .vState                      (vState) 

      , .pWakeupChannel              (pWakeupChannel) 

      , .vRemainingColdstartAttempts ()  

      , .zSyncCalcResult             (zSyncCalcResult) 

      , .header_received_on_A        (header_received[0]) 

      // ... 

      ); 

Figure 12: SVA Bind for Coverage Module 

 

The testbench environment can determine the coverage results for closed-loop constrained 

random stimulus generation, or checking multi-state sequences, by using the built-in system 

functions for SystemVerilog real-time coverage access as defined in the Coverage API 

section of the LRM [4]. Figure 13 shows an example of how to query the coverage value for 

a labeled cover statement using the $coverage_control and $coverage_get system 

functions.  
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integer num; 

if ($coverage_control(  `SV_COV_CHECK, 

                        `SV_COV_ASSERTION, 

                        `SV_COV_MODULE, 

                        $root.tb.pe.poc.trans_POC_CSA_CSI) == `SV_COV_OK ) 

  begin 

    num = $coverage_get(`SV_COV_ASSERTION, 

                        `SV_COV_MODULE, 

                        $root.tb.pe.poc.trans_POC_CSA_CSI); 

    case(num)  

      `SV_COV_OVERFLOW : $fatal(“non-integer coverage value”); 

      `SV_COV_ERROR    : $fatal(“error extracting coverage value”); 

      default          : $display(“trans_POC_CSA_CSI coverage = %0d”,num); 

    endcase 

  end 

else 

  $fatal(“coverage cannot be obtained for trans_POC_CSA_CSI”); 

Figure 13: Querying Real-Time SVA Coverage 

4 Conclusion 

This paper has demonstrated that it is possible to implement a relatively complex functional 

coverage model using SystemVerilog Assertions. While the full benefit of such an approach 

may be limited to applications where the micro-architectural requirements for the state 

coverage are well defined by the specification, as is the case for the SDL specification of the 

FlexRay Protocol Engine, the paper also illustrates the power of the SVA coverage 

constructs. The coding style and solutions provided can also be used in the typical low-level 

assertion-based coverage implemented by design and verification engineers in ABV driven 

projects.  

 

While there are some disadvantages of this approach when compared to implementations in 

using object-oriented HLVL, in particular a lack of scalability to abstract stimulus coverage, 

there are a number of specific advantages which should not be overlooked. In particular: 

 

• mixed-language simulators allow SVA to be mixed with any HDL or HLVL 

• SVA coverage model can be used in simulation environments with no HLVL coverage 

• implementation and use of SVA coverage model requires no object-oriented 

programming knowledge or skills 
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