
SEMICON Solutions

Bus Structure

Created by:
Duong Dang

Date: 20th Oct,2010

Introduction

� Buses are the simplest and most widely used
interconnection networks

� A number of modules is connected via a single
shared channel

Bus Properties

� Serialization
� Only one component can send a message at any given

time
� There is a total order of messages

Bus Properties

� Broadcast
� A module can send a message to several other components

without an extra cost

Bus Hardware

� Principle for hardware to access the bus
� Bus Transmit: ET active
� Bus Receive: ER active

Cycles, Messages and
Transactions

� Buses operate in units of cycles, messages
and transactions
� Cycles: A message requires a number of cycles to

be sent from sender to receiver over the bus
� Message: Logical unit of information (a read

message contains an address and control signals
for read)

� Transaction: A transaction consists of a sequence
of messages which together form a transaction (a
memory read requires a memory read message
and a reply with the requested data)

Synchronous Bus

� Includes a clock in the control lines
� A fixed protocol for communication

that is relative to the clock
� Advantage: involves very little logic

and can run very fast
� Disadvantages:

� Every device on the bus must run at
the same clock rate

� To avoid clock skew, they cannot be
long if they are fast

Asynchronous Bus

� It is not clocked
� It can accommodate a

wide range of devices
� It can be lengthened

without worrying about
clock skew

� It requires a
handshaking protocol

1. Master puts address on bus and
asserts READ when address is
stable

2. Memory puts data on bus and
asserts ACK when data is stable

3. Master deasserts READ when
data is read

4. Memory deasserts ACK

1a

1b

2a

2b

3

4

Bus Arbitration

� Since only one bus
master can use the bus at
a given time bus
arbitration is used

� An arbiter collects the
requests of all bus
masters and gives only
one module the right to
access the bus (bus
grant)

Importance of Arbiters

� Arbiters are not only used in bus-system, but
everywhere where several devices request
shared resources

� In network-on-chips arbitration is for instance
needed, if two or more packets want to enter
the same channel

Arbiter Interfaces

� This arbiter interface can be used to give a bus grant
for a fixed number of cycles
� (a): 1 cycle
� (b): 4 cycles

Arbiter Interfaces

� This arbiter allows for variable length grants
� The grant is hold as long as the “hold”-line is asserted
� In cycle 2 requester 0 gets the bus for 3 cycles
� In cycle 5 requester 1 gets the bus for 2 cycles
� In cycle 7 requester 1 gets the bus for one cycle

Fairness

� Fairness is a key property of an arbiter
� Some definitions

� Weak fairness: Every request is eventually served
� Strong fairness: Requests will be served equally

often
� Weighted “strong” fairness: The number of times

requester i is served is equal to its weight wi
� FIFO fairness: Requests are served in the order

the requests have been made

Local Fairness vs. Global Fairness

� Even if an arbiter is locally fair, a system with several
arbiters employing that arbiter may not be fair

� Though each arbiter Ai allocate 50% of their
bandwidth to its two inputs, r0 only gets 12.5%
of the total bandwidth, while r3 gets 50%

Fixed-Priority Arbiter

� A fixed-priority arbiter can be constructed as
an iterative circuit

� Each cell receives a request input ri and a
carry input ci and generates a grant output gi
and a carry output ci+1

� The resulting arbiter is not fair, since a
continuously asserted request r0 means that
none of the other requests will ever be
served!

Variable-Priority Arbiters

� Oblivious Arbiter
� Round-Robin Arbiter
� Grant-Hold Circuit
� Weighted Round-Robin Arbiter

Fair Arbiters

� A fair arbiter can be
generated by changing
the priority from cycle
to cycle

� Depending on the
priority generation,
different arbitration
schemes and degrees
of fairness can be
achieved

Fair Arbiters

� Oblivious Arbiters
� If pi is generated without knowledge of

ri and gi, the result is an oblivious
(unconscious) arbiter

� Examples are
� Randomly generated pi
� Rotating priorities (by shift register)

Oblivious Arbiters

� Oblivious arbiters provide
weak fairness but not strong
fairness (i.e. if r0 and r1 are
constantly asserted)

Round-Robin Arbiter

� A round-robin arbiter achieves strong fairness
� A request that was just served gets the lowest priority

� One-bit round-robin arbiter

Round-Robin Arbiter

� Any g is low

Round-Robin Arbiter

� One g is high

Grant-Hold Circuit

� Extends the duration of a grant
� As long as hold is asserted further arbitration is disabled

Grant-Hold Circuit

� An example for all hi=0

Grant-Hold Circuit

� An example for holding a grant

Weighted Round-Robin Arbiter

� A weighted round-robin arbiter allows to give requesters a larger
number of grants than other requesters in a controlled fashion

� If three devices have the weight 1,2,3 they get 1/6, 1/3 and 1/2 of the
grants

� The preset line is activated periodically after N (here 6 cycles) to load
the counter with its weight

� If some arbiters do not issue any requests during that interval, the
shared resource will remain idle until the next preset cycle

Matrix Arbiter

� Matrix W=[wij] of weights
� wij=1 if request i take priority over j

Matrix Arbiter

� wij = ¬wij∀i≠j
� A requester will be granted

the resource if no other
higher priority requester is
bidding for the same
resource

� Once a requester succeeds
in being granted a resource,
its priority is updated and
set to be the lowest among
all requesters

� Request i granted
� [i,*] ← 0
� [*,i] ← 1

Matrix Arbiter

� A matrix arbiter implements a
least recently served priority
scheme by maintaining a
triangular array of state bits
wij for all I < j

� The Matrix arbiter is very
good suited for a small
number of inputs, since it is
fast, easy to implement and
provides strong fairness!

Queuing Arbiter

� A queuing arbiter provides FIFO fairness
� It assigns each request a time stamp when it is asserted
� The request with the earliest time stamp receives the grant

Low Performance Bus Protocol

� Without a special bus protocol the bus is not
efficiently used

� In the example module 2 requests the bus in cycle 2,
but must wait until cycle 6 to receive the grant

Bus Pipelining

� A memory access consists of several cycles (including
arbitration)

� Since the bus is not used in all cycles, pipelining can be used
to increase the performance

� Only one transaction can
� Receive the grant during a given cycle
� Use the bus during a given cycle

Bus Pipelining
� Pipelining leads to an efficient use of the bus

� Stalls are inserted since only one instance can use the bus

� Sometimes (cycle 12) two transactions can overlap

� However this cannot be done in cycle 5 (2. Write) since otherwise RPLY and
ACK would overlap in cycle 6!

Split-Transaction Bus

� In a split-transaction bus a transaction is
splitted into a two transactions
� ”request”-transaction
� ”reply”-transaction

� Both transactions have to compete for the
bus by arbitration

Split-Transaction Bus

Split-Transaction Bus

� The advantages of the split-transaction bus are
evident, if there is a variable delay for requests, since
then transactions cannot overlap

Burst Messages

� There is a considerable amount of overhead in a bus
transaction
� Arbitration
� Addressing
� Acknowledgement

Burst Messages

� The overhead can be reduced, if messages are sent
as blocks (bursts)

Burst Messages

� The longer the burst, the better the efficiency
� BUT

� Other bus masters have to wait, which may be unacceptable in
many systems (Real-Time)

� Possible solution
� Maximum length for a burst
� Interrupt of long messages

� Restart or Resume

Embedded Busses

� Current system-on-chips are advanced enough to
need a hierarchy of busses

� A new set of bus standards have been defined to be
used in SoCs, e.g.
� ARM Amba
� STBus
� Altera Avalon
� ...

� These busses allow for higher performance than
traditional Tri-State busses

AMBA Specifications

� The AMBA specification defines an on-chip
communications standard for designing high
performance embedded micro-controllers

� Three buses are defined
� Advanced High-Performance Bus (AHB)
� Advanced System Bus (ASB)
� Advanced Peripheral Bus (APB)

System based on an AMBA Bus

� An AMBA system typically contains a high speed
bus (ASB or AHB) for CPU, fast memory and DMA
and a bus for peripherals (APB), which is connected
via a bridge to the high-speed bus

AMBA Buses

� AMBA AHB (new standard)
� High Performance
� Pipelined Operation
� Multiple Bus Masters
� Burst Transfers
� Split Transactions

� AMBA ASB (older standard)
� High Performance
� Pipelined Operation
� Multiple Bus Masters

� AMBA APB
� Low Power
� Latched Address and Control
� Simple Interface
� Suitable for many peripherals

AMBA AHB System

� AHB Master
� A bus master is able to initiate read and write

information by providing address and control
information. Only one bus master can use the bus
at the same time

� AHB Slave
� A bus slave responds to a read and write

operation within a given address-space range.
The bus slave signals back to the active bus
master the success, failure or waiting of the data
transfer

AMBA AHB System

� AHB Arbiter
� The bus arbiter ensures that only one bus master at a time

is allowed to initiate data transfers. Even though the
arbitration protocol is fixed, any arbitration algorithm, such
as highest priority or fair access can be implemented
depending on the application requirements

� An AHB includes only one arbiter

� AHB Decoder
� The AHB decoder is used to decode the address of each

transfer and provide a select signal for the slave that is
involved in the transfer

� A single centralized decoder is required in all AHB
implementations

AMBA AHB Bus Interconnection

� AHB Protocol is based on a central
multiplexer interconnection scheme

� All bus masters send their request in form of
address and control signals

� The arbiter chooses one master. The address
and control signals are routed to all slaves

� The decoder selects the signals from the
slave that is involved in the transfer with the
bus master

AMBA AHB Bus Interconnection

AMBA Address Decoding System

Basic Transfer

� An AHB transfer consists of two distinct sections
� The address phase, which lasts only a single cycle
� The data phase, which may require several cycles. This is

achieved using the HREADY signal

Transfer with wait states

Multiple Transfers

� When a transfer is extended in this way it will have
the side-effect of extending the address phase of the
following transfer

Burst Signal Encoding

� Both incrementing and wrapping bursts are
supported in the protocol
� Incrementing bursts access sequential locations
� For wrapping bursts, if the start address of the

transfer is not aligned to the total number of bytes
in the burst (size x beats) then the address of the
transfers in the burst will wrap when the boundary
is reached

Burst Signal Encoding

Four-beat incrementing burst

Undefined-length bursts

Four-beat wrapping burst

Arbitration

� The arbitration mechanism is used to ensure that only one
master has access to the bus at any one time

� When a master is granted the bus and is performing a fixed
length burst it is not necessary to continue to request the bus
in order to complete the burst

Granting access with wait states

Bus master grant signals

Split Transfers

� SPLIT transfers improve the overall utilization
of the bus
� separating (or splitting) the operation of the

master providing the address to a slave from the
operation of the slave responding with the
appropriate data

Split Transfers

� When a transfer occurs the slave can decide to
issue a SPLIT response if it believes the transfer will
take long time

� This signals to the arbiter that the master which is
attempting the transfer should not be granted
access to the bus until the slave indicates it is ready
to complete the transfer

� The arbiter is responsible for observing the
response signals and internally masking any
requests from masters which have been SPLIT

Split Transfer Sequence

1. The master starts the transfer in an identical
way to any other transfer and issues address
and control information

2. If the slave is able to provide data
immediately it may do so. If the slave decide
that it may take a number of cycles to obtain
the data it gives a SPLIT transfer response

3. The arbiter grants other masters use of the
bus

Split Transfer Sequence

4. When the slave is ready to complete the transfer it asserts the
appropriate bit of the HSPLITx bus to the arbiter to indicate which
master should be regranted access to the bus

5. The arbiter observes the HSPLITx signals on every cycle, and
when any bit of HSPLITx is asserted the arbiter restores the
priority of the appropriate master

6. Eventually the arbiter will grant the master so it can re-attempt
the transfer. This may not occur immediately if a higher priority
master is using the bus

7. When the transfer eventually takes place the slave finishes with
an OKAY transfer response

Handover after split transfer

Q & A

